https://www.luogu.org/problem/P1525
题目描述S城现有两座监狱,一共关押着N名罪犯,编号分别为1−N。他们之间的关系自然也极不和谐。很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突。我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多。如果两名怨气值为c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c的冲突事件。
每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到S 城Z 市长那里。公务繁忙的Z 市长只会去看列表中的第一个事件的影响力,如果影响很坏,他就会考虑撤换警察局长。
在详细考察了N 名罪犯间的矛盾关系后,警察局长觉得压力巨大。他准备将罪犯们在两座监狱内重新分配,以求产生的冲突事件影响力都较小,从而保住自己的乌纱帽。假设只要处于同一监狱内的某两个罪犯间有仇恨,那么他们一定会在每年的某个时候发生摩擦。
那么,应如何分配罪犯,才能使Z 市长看到的那个冲突事件的影响力最小?这个最小值是多少?
输入格式
每行中两个数之间用一个空格隔开。第一行为两个正整数N,M,分别表示罪犯的数目以及存在仇恨的罪犯对数。接下来的M行每行为三个正整数
a
j
,
b
j
,
c
j
a_j,b_j,c_j
aj,bj,cj,表示
a
j
a_j
aj号和
b
j
b_j
bj号罪犯之间存在仇恨,其怨气值为
c
j
c_j
cj。数据保证
1
<
a
j
≤
b
j
≤
N
,
0
<
c
j
≤
1
,
000
,
000
,
000
1<aj≤bj≤N,0<cj≤1,000,000,000
1<aj≤bj≤N,0<cj≤1,000,000,000,且每对罪犯组合只出现一次。
输出格式
共1 行,为Z 市长看到的那个冲突事件的影响力。如果本年内监狱中未发生任何冲突事件,请输出0。
思路一:带权并查集,按照贪心的思路,肯定希望边权大的两个节点在不同的集合中,因此先对边集按照权值从大到小排序,然后用带权并查集记录关系,当某一次查询的两个节点的根节点相同且二者的关系是在同一集合中(出现矛盾),则输出该条边的权值。
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn=2e4+5;
const int maxm=1e5+5;
struct Edge
{
int u,v,dis;
bool operator <(const Edge &a) const
{
return dis>a.dis;
}
}a[maxm];
int f[maxn],relation[maxn];//0 同一集合 1 不同集合
int n,m;
void init()
{
for(int i=1;i<=n;i++)
f[i]=i,relation[i]=0;
}
int father(int x)
{
if(f[x]==x)
return x;
int tmp=f[x];
f[x]=father(f[x]);
relation[x]=(relation[x]+relation[tmp])%2;
return f[x];
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=0;i<m;i++)
scanf("%d %d %d",&a[i].u,&a[i].v,&a[i].dis);
sort(a,a+m);
init();
for(int i=0;i<m;i++)
{
int fx=father(a[i].u);
int fy=father(a[i].v);
if(fx==fy)
{
if((relation[a[i].u]-relation[a[i].v]+2)%2==0)
{
printf("%d\n",a[i].dis);
return 0;
}
}
else
{
f[fx]=fy;
relation[fx]=(-relation[a[i].u]+1+relation[a[i].v]+2)%2;
}
}
printf("0\n");
return 0;
}
思路二:二分+染色法判二分图。找最小的 m i d mid mid值,使得所有边权 > = m i d >=mid >=mid的点构成的图(可能有多个)是二分图,那么答案就是 m i d − 1 mid-1 mid−1,特判 m i d = 0 mid=0 mid=0的情况就可以了。
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pr pair<int,int>
using namespace std;
typedef long long ll;
const int maxn=2e4+5;
const int maxm=1e5+5;
struct Edge
{
int to,nxt,dis;
}edge[maxm<<1];
int vis[maxn];
int head[maxn];
int n,m,tot,mid;
inline void addedge(int u,int v,int dis)
{
edge[++tot].to=v,edge[tot].nxt=head[u],edge[tot].dis=dis,head[u]=tot;
}
bool dfs(int u,bool c)
{
if(vis[u]==-1)
vis[u]=c;
else if(vis[u]==c)
return 1;
else
return 0;
for(int i=head[u];i;i=edge[i].nxt)
if(edge[i].dis>=mid&&!dfs(edge[i].to,c^1))
return 0;
return 1;
}
int main()
{
scanf("%d %d",&n,&m);
int l=0,r=0,u,v,dis;
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&u,&v,&dis);
addedge(u,v,dis),addedge(v,u,dis);
r=max(r,dis);
}
while(l<=r)
{
mid=l+r>>1;
bool flag=1;
memset(vis,-1,sizeof(vis));
for(int i=1;i<=n&&flag;i++)
if(vis[i]==-1)
flag=dfs(i,0);
if(!flag)
l=mid+1;
else
r=mid-1;
}
r=max(r,0);
printf("%d\n",r);
return 0;
}