BZOJ 2002 Bounce 弹飞绵羊 分块

https://vjudge.net/problem/HYSBZ-2002
在这里插入图片描述
思路:用cnt[i]cnt[i]记录从位置ii出发被弹飞的次数,那么逆序处理的话可以O(n)O(n)计算出cntcnt数组,但是每次修改a[i]a[i]的弹力系数时,都要重新需改cnt[1i]cnt[1…i],这样复杂度是O(nm)O(n*m)的,肯定过不了。我们考虑降低一下对cntcnt的要求。即对原序列进行分块,设ii属于第jj块,那么用cnt[i]cnt[i]记录从ii出发移动到>j>j的块所需要的次数,wz[i]wz[i]记录最终移动到的位置。这两个数组也可以在O(n)O(n)内计算出来,但是每次修改只需要修改ii所在块的cntwzcnt、wz(实际上右边界可以缩小到ii),单次复杂度仅仅只有O(n)O(\sqrt n),所以总体复杂度是O(mn)O(m*\sqrt n)

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;

const int maxn=2e5+5;

int n;
int a[maxn],pos[maxn],cnt[maxn],wz[maxn];
int l[2000],r[2000];
//cnt[i]记录从当前位置跳到该块之后所需要的最少步数
//wz[i]记录跳到的位置

inline void update(int p)
{
    int posr=r[pos[p]]; //p所在块的右区间端点
    cnt[p]=1,wz[p]=p+a[p];
    if(wz[p]<=posr)
    {
        cnt[p]+=cnt[wz[p]];
        wz[p]=wz[wz[p]];
    }
}

inline int query(int p)
{
    int ct=0;
    while(p<=n)
    {
        ct+=cnt[p];
        p=wz[p];
    }
    return ct;
}

int main()
{
    scanf("%d",&n);
    int dis=sqrt(n);
    int num=ceil(n*1.0/dis);
    for(int i=1;i<=num;i++)
        l[i]=(i-1)*dis+1,r[i]=i*dis;
    r[num]=n;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        pos[i]=(i-1)/dis+1;
    }
    for(int i=n;i>=1;i--)
        update(i);
    int m,op,u,v;
    scanf("%d",&m);
    while(m--)
    {
        scanf("%d%d",&op,&u);
        ++u;
        if(op==1)
            printf("%d\n",query(u));
        else
        {
            scanf("%d",&v);
            if(a[u]==v)
                continue;
            a[u]=v;
            int posl=l[pos[u]];
            for(int i=u;i>=posl;i--)
                update(i);
        }
    }
    return 0;
}

发布了727 篇原创文章 · 获赞 35 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 撸撸猫 设计师: 设计师小姐姐

分享到微信朋友圈

×

扫一扫,手机浏览