hihocoder 1298 欧拉函数

https://hihocoder.com/problemset/problem/1298

描述

小Hi和小Ho有时候会用密码写信来互相联系,他们用了一个很大的数当做密钥。小Hi和小Ho约定了一个区间[L,R],每次小Hi和小Ho会选择其中的一个数作为密钥。

小Hi:小Ho,这次我们选[L,R]中的一个数K。

小Ho:恩,小Hi,这个K是多少啊?

 

小Hi:这个K嘛,不如这一次小Ho你自己想办法算一算怎么样?我这次选择的K满足这样一个条件:

假设φ(n)表示1..n-1中与n互质的数的个数。对于[L,R]中的任意一个除K以外的整数y,满足φ(K)≤φ(y)且φ(K)=φ(y)时,K<y。

也即是K是[L,R]中φ(n)最小并且值也最小的数。

小Ho:噫,要我自己算么?

小Hi:没错!

小Ho:好吧,让我想一想啊。

<几分钟之后...>

小Ho:啊,不行了。。感觉好难算啊。

小Hi:没有那么难吧,小Ho你是怎么算的?

小Ho:我从枚举每一个L,R的数i,然后利用辗转相除法去计算[1,i]中和i互质的数的个数。但每计算一个数都要花好长的时间。

小Hi:你这样做的话,时间复杂度就很高了。不妨告诉你一个巧妙的算法吧:

提示:欧拉函数

×

提示:欧拉函数

小Hi:刚刚我所描述的φ(n),一般被称为欧拉函数。其定义为:小于n的正整数中与n互质的数的个数。

小Ho:又是欧拉么!

小Hi:毕竟是伟大的数学家,所以以他名字命名的东西很多啦。

对于φ(n),我们有这样三个性质:

 

(1) 若n为素数,则φ(n) = n - 1

显然,由于n为素数,1~n-1与n都只有公因子1,因此φ(n) = n - 1。

 

(2) 若n = p^k,p为素数(即n为单个素数的整数幂),则φ(n) = (p-1)*p^(k-1)

因为n是p的整数幂,因此所有p的倍数和n都不互质。小于n的p的倍数一共有p^(k-1)-1个,因此和n互质的个数为:

p^k-1 - (p^(k-1)-1) = p^k - p^(k-1) = (p-1)*p^(k-1)

 

(3) 若p和q互质,则φ(p*q) = φ(p) * φ(q)

对于所有小于pq的整数u,可以表示为u=aq+r。(a=0,1,2,...,p-1,r=0,1,...,q-1)。

对于u = aq + r, 设R = u mod p,0≤R<q。对于一个固定的r,设a1, a2满足0 <= a1, a2 < p且a1≠a2,有:

u1 = a1*q+r, u2 = a2*q+r
u1-u2=(a1-a2)*q

因为p与q互质,且|a1-a2|<p,则|u1-u2|一定不是p的倍数。

所以对于每一个固定的r,其对应的p个u = a*q+r(a=0,1,2,...,p-1)对mod p来说余数都不相同,即u mod p的结果恰好取遍0,1,...,p-1中的每一个数。

下面我证明一个引理:u mod p与p互质 <=> u与p互质,其证明如下:

假设a,b互质,c = a mod b。
假设c与b不互质,则存在d≥1,使得c=nd, b=md。
由于c = a mod b,因此a = kb + c,
则a = kmd + nd = (kn+m)d
因此d是a,b的公因数,与a,b互质矛盾。
假设不成立,所以c与b互质。

因此对于任意一个确定的r,与其对应的p个u中恰好有φ(p)个与p互质。

同理,由u = aq + r知r与q互质 <=> u与q互质。因此在0..q-1中恰好有φ(q)个r使得u与q互质。

综上,当r与q互质的情况下,固定r可以得到φ(p)个与p和q都互质的数。

满足条件的r一共用φ(q)个,所以一共能找到有φ(p) * φ(q)个与p和q都互质的数。

由此得证:φ(p*q) = φ(p) * φ(q)

这一段证明不是太好理解,小Ho你一定要自己推导一遍哦。

小Ho:好。

 

小Hi:在上面这些性质的基础上我们能到推导出两条定理:

若p为质数,n为任意整数:

(1) 若p为n的约数,则φ(n*p) = φ(n) * p

若p为n的约数,且p为质数。则我们可以将n表示为p^k*m。m表示其他和p不同的质数的乘积。

显然有p^k与m互质,则:

φ(n) = φ(p^k)*φ(m) = (p-1)*p^(k-1)*φ(m)
φ(n*p) = φ(p^(k+1))*φ(m) = (p-1)*p^k*φ(m) = (p-1)*p^(k-1)*φ(m) * p =  φ(n) * p

(2) 若p为不为n的约数,则φ(n*p) = φ(n) * (p-1)

由p不为n的约数,因此p与n互质,所以φ(n*p) = φ(n) * φ(p) = φ(n)*(p-1)

 

根据这两条定理,当我们得到一个n时,可以枚举质数p来递推的求解φ(n*p)。这一步是不是觉得很眼熟呢?

小Ho:嗯...我想起了,这不是我们使用欧拉筛法时一样的算法么?

小Hi:没错!因此我们只需要在欧拉筛代码的基础上做一个小改动,就可以得到递推求解φ(n)的算法:

isPrime[] = true
primeList = []
phi = []	// phi[n]表示n的欧拉函数
primeCount = 0
For i = 2 .. N
	If isPrime[i] Then
		primeCount = primeCount + 1
		primeList[ primeCount ] = i
		phi[i] = i - 1 // 质数的欧拉函数为p-1
	End If 
	For j = 1 .. primeCount
		If (i * primeList[j] > N) Then
			Break
		End If
		isPrime[ i * primeList[j] ] = false
		If (i % primeList[j] == 0) Then
			// primeList[j]是i的约数,φ(n*p) = φ(n) * p
			phi[ i * primeList[j] ] = phi[i] * primeList[j];
			Break
		Else 
			// primeList[j]不是i的约数,φ(n*p) = φ(n) * (p-1)
			phi[ i * primeList[j] ] = phi[i] * (primeList[j] - 1);
		End If
	End If
End For

小Ho:因为欧拉筛的时间复杂度是O(n)的,因此求出一个大区间内所有数的欧拉函数也只用了O(n)的时间。接下来再使用O(n)的枚举就可以求得最小的K了。我知道该怎么做了!

Close

输入

第1行:2个正整数, L,R,2≤L≤R≤5,000,000。

输出

第1行:1个整数,表示满足要求的数字K

Sample Input

4 6

Sample Output

4

思路:欧拉函数,题意对欧拉函数的性质、证明我觉得非常详细,这里再稍微总结一下。

欧拉函数是小于n的正整数中与n互质的数的数目。(规定φ(1)=1)

通式:

其中p1、p2……pn为x的所有质因数,x是正整数。注意:每种质因数只有一个,比如12=2*2*3,但是φ(12)=12*(1-1/2)*(1-1/3)=4

有了这些性质就可以了~欧拉筛素数的同事可以处理出来欧拉函数~

#include<iostream>
#include<cstdio>
#include<cstring>
typedef long long ll;
using namespace std;

const int maxn=5000005;
ll prime[maxn];
int vis[maxn];
ll phi[maxn];

int main()
{
	int l,r;
	scanf("%d%d",&l,&r);
	phi[1]=1;
	int cnt=0;
	for(int i=2;i<=r;i++)
	{
		if(!vis[i])
		{
			prime[++cnt]=i;
			phi[i]=i-1;	//若i为素数 则φ(i)=i-1
		}
		for(int j=1;j<=cnt&&prime[j]*i<=r;j++)
		{
			vis[prime[j]*i]=1;
			if(i%prime[j]==0)
			{
				phi[i*prime[j]]=phi[i]*prime[j];
				break;
			}
			else	//若m n 互质 φ(mn)=φ(m)φ(n)
				phi[i*prime[j]]=phi[i]*phi[prime[j]];
		}
	}
	int MIN=l;
	for(int i=l;i<=r;i++)
	{
		if(phi[i]<phi[MIN])
			MIN=i;
	}
	printf("%d\n",MIN);
	return 0;
}

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值