Numpy数据类型

NumPy支持比Python更多种类的数字类型(点此查看Python支持的数字类型)。

Numpy 的类型C 的类型描述
np.boolbool存储为字节的布尔值(TrueFalse
np.bytesigned char平台定义
np.ubyteunsigned char平台定义
np.shortshort平台定义
np.ushortunsigned short平台定义
np.intcint平台定义
np.uintcunsigned int平台定义
np.int_long平台定义
np.uintunsigned long平台定义
np.longlonglong long平台定义
np.ulonglongunsigned long long平台定义
np.half / np.float16半精度浮点数:符号位,5位指数,10位尾数
np.singlefloat平台定义的单精度浮点数:通常为符号位,8位指数,23位尾数
np.doubledouble平台定义的双精度浮点数:通常为符号位,11位指数,52位尾数。
np.longdoublelong double平台定义的扩展精度浮点数
np.csinglefloat complex复数,由两个单精度浮点数(实部和虚部)表示
np.cdoubledouble complex复数,由两个双精度浮点数(实部和虚部)表示。
np.clongdoublelong double complex复数,由两个扩展精度浮点数(实部和虚部)表示。

由于其中许多都具有依赖于平台的定义,因此Numpy提供了一组固定大小的别名:

Numpy 的类型C 的类型描述
np.int8int8_t字节(-128到127)
np.int16int16_t`整数(-32768至32767)
np.int32int32_t整数(-2147483648至2147483647)
np.int64int64_t整数(-9223372036854775808至9223372036854775807)
np.uint8uint8_t无符号整数(0到255)
np.uint16uint16_t无符号整数(0到65535)
np.uint32uint32_t无符号整数(0到4294967295)
np.uint64uint64_t无符号整数(0到18446744073709551615)
np.intpintptr_t用于索引的整数,通常与索引相同 ssize_t
np.uintpuintptr_t整数大到足以容纳指针
np.float32float
np.float64 / np.float_double请注意,这与内置python float的精度相匹配。
np.complex64float complex复数,由两个32位浮点数(实数和虚数组件)表示
np.complex128 / np.complex_double complex请注意,这与内置python 复合体的精度相匹配。

NumPy数值类型是dtype(数据类型)对象的实例,每个对象都具有独特的特征。使用后导入NumPy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值