高斯过程


高斯过程 (GP) 是一种常用的监督学习方法,旨在解决回归问题概率分类问题

高斯过程模型的优点如下:

预测内插了观察结果(至少对于正则核)。

预测结果是概率形式的(高斯形式的)。这样的话,
人们可以计算得到经验置信区间并且据此来判断是否需要修改(在线拟合,自适应)

在一些区域的预测值。

通用性: 可以指定不同的:ref:内核(kernels)<gp_kernels>。
虽然该函数提供了常用的内核,但是也可以指定自定义内核。

高斯过程模型的缺点包括:

它们不稀疏,例如,模型通常使用整个样本/特征信息来进行预测。
高维空间模型会失效,高维也就是指特征的数量超过几十个。

todo
http://sklearn.apachecn.org/cn/0.19.0/modules/gaussian_process.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值