高斯过程(Gaussian Process)

高斯过程是对函数的概率分布进行建模,给定数据 ( X , Y ) (\mathbf{X}, \mathbf{Y}) (X,Y) , 高斯过程便是得到从空间 X \mathbf{X} X 到空间 y \mathbf{y} y 的概率性映射,假设 f f f 为所需求得的函数分布,考虑到存在一定的噪声干扰,则从 X \mathbf{X} X y \mathbf{y} y 的概率性映射可表示为:
y = f ( X ) + ϵ , ϵ ∼ N ( 0 , β − 1 I ) \mathbf{y}=f(\mathbf{X})+ \boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim \mathcal{N}\left(\mathbf{0}, \beta^{-1} \mathbf{I}\right) y=f(X)+ϵ,ϵN(0,β1I) 该公式中涉及两个映射过程,先是从 X \mathbf{X} X 到函数 F \mathbf{F} F 的映射,后是 F \mathbf{F} F Y \mathbf{Y} Y 的映射。而高斯过程主要专注于第一个映射过程,这两个概率性映射可由以下高斯分布表示:
F ∣ X ∼ N ( 0 , K ( X , X ) ) \mathbf{F} \mid \mathbf{X} \sim \mathcal{N}(\mathbf{0}, K(\mathbf{X}, \mathbf{X})) FXN(0,K(X,X)) Y ∣ F ∼ N ( F , β − 1 I N ) \mathbf{Y} \mid \mathbf{F} \sim \mathcal{N}\left(\mathbf{F}, \beta^{-1} \mathbf{I}_{N}\right) YFN(F,β1IN) 其中 K ( X , X ) K(\mathbf{X}, \mathbf{X}) K(X,X) 是高斯过程的核函数,衡量各 X \mathbf{X} X之间的两两相互关系。
则由 X \mathbf{X} X y \mathbf{y} y 的概率映射可表示为:
p ( y ∣ X ) = ∫ p ( y ∣ f ) p ( f ∣ X ) d f p(\mathbf{y}\mid\mathbf{X})=\int p(\mathbf{y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{X}) d \mathbf{f} p(yX)=p(yf)p(fX)df 现在我们给定测试数据 X ∗ \mathbf{X}^{*} X, 要求其所对应的预测值 y ∗ \mathbf{y}^{*} y, 其公式为:
p ( y ∗ ∣ X ∗ , X , y ) = ∫ p ( y ∗ ∣ f ∗ ) p ( f ∗ ∣ X ∗ , X , y ) d f p(\mathbf{y}^{*}\mid\mathbf{X}^{*}, \mathbf{X}, \mathbf{y})=\int p(\mathbf{y}^{*} \mid \mathbf{f}^{*}) p(\mathbf{f}^{*} \mid \mathbf{X}^{*}, \mathbf{X}, \mathbf{y}) d \mathbf{f} p(yX,X,y)=p(yf)p(fX,X,y)df 其中 p ( y ∗ ∣ f ∗ ) p\left(\mathbf{y}^{*}\mid \mathbf{f}^{*}\right) p(yf) 已知, p ( f ∗ ∣ X ∗ , X , y ) p\left(\mathbf{f}^{*}\mid \mathbf{X}^{*}, \mathbf{X}, \mathbf{y}\right) p(fX,X,y) 为未知量,由于:
[ f f ∗ ] ∼ N ( 0 , [ K ( X , X ) K ( X , X ∗ ) K ( X ∗ , X ) K ( X ∗ , X ∗ ) ] ) \left[\begin{array}{l}\mathbf{f} \\\mathbf{f}^{*}\end{array}\right] \sim \mathcal{N}\left(\mathbf{0},\left[\begin{array}{ll}K(\mathbf{X}, \mathbf{X}) & K\left(\mathbf{X}, \mathbf{X}^{*}\right) \\K\left(\mathbf{X}^{*}, \mathbf{X}\right) & K\left(\mathbf{X}^{*}, \mathbf{X}^{*}\right)\end{array}\right]\right) [ff]N(0,[K(X,X)K(X,X)K(X,X)K(X,X)]) 所以:
p ( f ∗ ∣ X ∗ , X , y ) ∼ N ( K ( X ∗ , X ) K ( X , X ) − 1 f , K ( X ∗ , X ∗ ) − K ( X ∗ , X ) K ( X , X ) − 1 K ( X , X ∗ ) ) \begin{aligned} p\left(\mathbf{f}^{*} \mid \mathbf{X}^{*}, \mathbf{X}, \mathbf{y}\right) \sim \mathcal{N}(& K\left(\mathbf{X}^{*}, \mathbf{X}\right) K(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}, \\ &\left.K\left(\mathbf{X}^{*}, \mathbf{X}^{*}\right)-K\left(\mathbf{X}^{*}, \mathbf{X}\right) K(\mathbf{X}, \mathbf{X})^{-1} K\left(\mathbf{X}, \mathbf{X}^{*}\right)\right) \end{aligned} p(fX,X,y)N(K(X,X)K(X,X)1f,K(X,X)K(X,X)K(X,X)1K(X,X)) 上式的证明可参考《Pattern Recognition and Machine Learning》一书中的”条件高斯分布”章节。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值