高斯过程(Gaussian Process)

Introduction

要了解GP的本质及其描述方法。将GP和贝叶斯概率结合在一起,可以构造强大的数学模型。高斯过程的一些优势:

  • GP属于无参数模型,相对解决问题的复杂度及与其它算法比较减少了算法计算量。
  • GP可以解决高维空间(实际上是无限维)的数学问题,可以面对复杂的数学问题。
  • 结合贝叶斯概率算法,可以实现通过先验概率,推导未知后验输入变量的后验概率。由果推因的概率。
  • GP观测变量空间是连续域,时间或空间。
  • GP观测变量空间是实数域的时候,我们就可以进行回归而实现预测。
  • GP观测变量空间是整数域的时候(观测点是离散的),我们就可以进行分类。结合贝叶斯算法甚至可以实现单类分类学习(训练),面对小样本就可以实现半监督学习而后完成分类。在异常检测领域很有用,降低打标签成本(小样本且单类即可训练模型)。

高斯分布

在这里我们再简单分析一下高斯分布吧。

一维高斯分布

定义:
若随机变量 X X X服从一个位置参数为 μ \mu μ,尺度参数为 σ \sigma σ的概率分布,记为:
X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^{2}) XN(μ,σ2)
则其概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} f(x)=σ2π 1e2σ2(xμ)2
正态分布的期望值 μ \mu μ等于位置参数,决定了分布曲线的位置; 其标准差 σ \sigma σ等于尺度参数,决定了分布曲线的幅度。

正态分布中一些值得注意的现象:

  • 密度函数关于平均值 μ \mu μ对称。

  • 平均值与它的众数以及中位数同一数值。

  • 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。

  • 95.449974%的面积在平均数左右两个标准差2 \sigma的范围内。

  • 99.730020%的面积在平均数左右三个标准差3 \sigma的范围内。 - 99.993666%的面积在平均数左右四个标准差4 \sigma的范围内。
    在这里插入图片描述
    正态分布的一些性质:
    - 如果 X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^{2}) XN(μ,σ2), 且a与b为实数,那么 a X + b ∼ N ( a μ + b , ( a σ )

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值