基本组合逻辑部件
有5种: 加法器、 编码器、 译码器、 数据选择器、 数据比较器。
口诀: 加 编 译 选 比
概述
一 组合逻辑电路的特点:
1. 从功能上, 任意时刻的输出取决于该时刻的输入
2. 从电路结构上, 没有记忆元件。
二 逻辑功能的描述
组合逻辑电路的框图
用逻辑函数式, 来表示
组合逻辑电路,要用到逻辑门符号
逻辑门符号https://blog.csdn.net/ximanni18/article/details/120644689
下面依次介绍5种组合逻辑器件
一. 加法器
1. 半加器
半加器电路是数字电路中常用的运算电路之一, 其含义是只对本位的两个二进制数求和, 并向高位产生进位, 不考虑低位的进位。
简单地说,不考虑低位的进位 称为半加器。
设A、B 代表两个本位相加的二进制数, S代表本位和、C代表向高位的进位。
半加器算式如左:
半加器的真值表
输 入 | 输 出 | ||
A | B | S | C |
0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
可以看出, S的结果正好为异或的结果, C的结果为 与运算的结果
其逻辑电路如图6.4.1所示, 逻辑符号如图6.4.2所示
注意: 半加器符号里 CO 指 进位输出, O 表示 Output 输出
总结: 半加器只能应用于 两个 都只是一位的二进制相加, 不能用于多位的二进制数 的相加!!
2 全加器
全加器是指两个多位二进制数相加是, 第 i 位的被加数 和加数
以及来自相邻低位的进位位
三者相加, 其结果得到本位和以及向相邻高位的进位
.
写出逻辑函数表达式为
全加器符号为:
3. 多位二进制加法器
全加器只能实现一位二进制数的加法, 要实现多位二进制的加法, 可用多个一位全加器级联而实现, 将低位片的进位输出信号接到高位片的进位输入端。 四位二进制数的加法电路如下所示
二 编码器
为什么需要编码器? 数字系统只能处理二进制信息,人们习惯采用十进制。
因此需要一种将十进制数或字符转换成二进制代码的电路, 这种电路称为编码器。
下表6.4.3 给出了四个输入端 ,
,
,
, 两个输出端
,
编码器的真值表, 通常称为4线——2线编码器。
注意: 前面的 4线 表示输入,
后面的2线 表示输出。
常用的编码器有: 10线——4线优先编码器74LS147,
8线——3线优先编码器74LS148
三 译码器
a. 实现译码功能的电路称作译码器,
b. 将二进制翻译成十进制的译码器称为二——十进制译码器,
c. 用于显示的译码器称为显示译码器。
3.1 二进制译码器(最小项译码器)
例如: 3位二进制(3线——8线) 译码器框图和真值表如下所示:
这里, 3线 指输入, 8线指输出, 对应的真值表如下
从真值表,可得出结论:
最小项译码器
特点: n线——2ⁿ线;
输出仅有1个有效信号对应。
例如 2-4 (读作2线—4线), 3-8(读作3线—8线), 4-16(读作4线—16线)