高数_第2章多元函数微分学__求解条件极值的方法__拉格朗日乘数法

二元函数条件极值的一般提法是:   在约束条件  φ(x,  y) = 0,求函数z = f(x,  y) 的极小值或极大值。

 

拉格朗日乘数法:  设二元函数f (x, y) 和  φ(x,  y) 在所考虑的区域内有连续的偏导数, 且  φᵪ(x,  y),    φᵧ(x, y) 不同时为0。 

L(x,  y) = f(x,  y) +  λφ(x, y)。                       (1)

 

其中常数  λ 称为拉格朗日乘数, L(x, y) 称为拉格朗日函数。  求L的两个偏导数, 并建立方程组

525391fdff704375b215d370c4d21ade.png如果函数z = f(x, y)在约束条件  φ (x, y)=0下的极值点是(x₀, y₀), 则存在 λ₀,使得  x₀,  y₀, 

λ₀ 是方程组的解。

拉格朗日乘法给出了求条件极值的一般方法, 它的步骤是:

  1. 根据目标函数和约束条件写出拉格朗日函数(1)
  2. 建立方程组
  3. 求出方程组的全部解, 如果 λ₀,  x₀, y₀是方程组的解,则点(x₀,  y₀)是可疑极值点,
  4. 判断点(x₀,   y₀)是否为极值点。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值