高数_第3章重积分_二重积分_求平面(曲面)所围立体的体积

前面讲述的都是已知二重积分的表达式,来计算结果

今天我们要求解的是 只知道平面(曲面)的方程,根据所转的立体求体积。

就是说回到二重积分的来源的题型: 求曲顶柱体的体积。

看一个题目:

求由四个平面x=0,   x=1,  y=0,  y=1 所围的柱体被平面z=0 及2x+3y+z=6 截得的立体的体积。

解:  要求解此题, 先要画出立体图形来

7eef4fa6e90c436494d5640bf0758bdc.jpeg

平面2x + 3y+z =6可转化为

162bb189b11b48d29eb55e4b6524016f.jpeg

 此立体可以看作是以xOy平面上的区域D: 0≤x≤1,  0≤y≤1 为底,以平面2x+3y+z=6为顶的曲顶柱体,

曲顶面的方程即为 被积函数!!

这里为 z = 6-2x-3y。 因此所求体积为

68dd2fca95c444a7a384de83f0f31720.jpeg

总结:解本题的关键是确定被积函数, 曲顶的方程就是被积函数。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值