二重积分求曲面相交形成的立体的体积

二重积分求曲面相交形成的立体的体积

1.求曲面 z 2 = x 2 4 + y 2 9 z^2=\frac{x^2}{4}+\frac{y^2}{9} z2=4x2+9y2 2 z = x 2 4 + y 2 9 2z=\frac{x^2}{4}+\frac{y^2}{9} 2z=4x2+9y2所围立体的体积.

解:

4 z 2 = 4 x 2 4 + y 2 9 ​ 4z^2=4\frac{x^2}{4}+\frac{y^2}{9}​ 4z2=44x2+9y2

4 z 2 = ( x 2 4 + y 2 9 ) 2 4z^2=(\frac{x^2}{4}+\frac{y^2}{9})^2 4z2=(4x2+9y2)2

投影曲线: x 2 4 + y 2 9 = 4 \frac{x^2}{4}+\frac{y^2}{9}=4 4x2+9y2=4, D: x 2 4 + y 2 9 ≤ 4 \frac{x^2}{4}+\frac{y^2}{9}\le4 4x2+9y24

V = ∬ D [ x 2 4 + y 2 9 − 1 2 ( x 2 4 + y 2 9 ) ] d A V=\iint\limits_{D}\left[\sqrt{\frac{x^2}{4}+\frac{y^2}{9}}-\frac{1}{2}(\frac{x^2}{4}+\frac{y^2}{9}) \right]dA V=D[4x2+9y2 21(4x2+9y2)]dA

{ x = 2 r cos ⁡ θ y = 3 r sin ⁡ θ ⇒ D ′ : 0 ≤ r ≤ 2 , θ ∈ [ 0 , 2 π ] , J = ∣ 2 cos ⁡ θ − 2 r sin ⁡ θ 3 sin ⁡ θ 3 r cos ⁡ θ ∣ = 6 r \left\{\begin{array}{l}x=2r\cos \theta \\y=3r\sin \theta\end{array}\right. \Rightarrow D': 0\le r\le 2, \theta\in[0,2\pi],J=\begin{vmatrix} 2\cos \theta & -2r \sin\theta \\ 3\sin \theta & 3r \cos\theta\end{vmatrix}=6r {x=2rcosθy=3rsinθD:0r2,θ[0,2π],J= 2cosθ3sinθ2rsinθ3rcosθ =6r

V = ∫ 0 2 π d θ ∫ 0 2 ( r − 1 2 r 2 ) ⋅ 6 r d r = 2 π ∫ 0 2 ( 6 r 2 − 3 r 3 ) d r = 2 π [ 2 r 3 − 3 4 r 4 ] 0 2 = 2 π × 4 = 8 π \begin{aligned}V & = \int_{0}^{2\pi}d\theta\int_{0}^{2}(r-\frac{1}{2}r^2 )\cdot 6rdr\\&=2\pi \int_{0}^{2}(6r^2-3r^3 )dr\\&=2\pi\left[2r^3-\frac{3}{4}r^4 \right ]_{0}^{2}\\&=2\pi\times 4\\&=8\pi \end{aligned} V=02πdθ02(r21r2)6rdr=2π02(6r23r3)dr=2π[2r343r4]02=2π×4=8π

2.求椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1和锥面 x 2 a 2 + y 2 b 2 = z 2 c 2 ( z ≥ 0 ) \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}(z\ge0) a2x2+b2y2=c2z2(z0)所围立体的体积.

解:

投影曲线: x 2 a 2 + y 2 b 2 = 1 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{1}{2} a2x2+b2y2=21, D: x 2 a 2 + y 2 b 2 ≤ 1 2 \frac{x^2}{a^2}+\frac{y^2}{b^2}\le\frac{1}{2} a2x2+b2y221

V = ∬ D [ c 2 ( 1 − x 2 a 2 − y 2 b 2 ) − c 2 ( x 2 a 2 + y 2 b 2 ) ] d A V=\iint\limits_{D}\left[\sqrt{c^2(1-\frac{x^2}{a^2}-\frac{y^2}{b^2})}-\sqrt{c^2(\frac{x^2}{a^2}+\frac{y^2}{b^2})} \right]dA V=D[c2(1a2x2b2y2) c2(a2x2+b2y2) ]dA

{ x = a r cos ⁡ θ y = b r sin ⁡ θ ⇒ D ′ : 0 ≤ r ≤ 2 2 , θ ∈ [ 0 , 2 π ] , J = ∣ a cos ⁡ θ − a r sin ⁡ θ b sin ⁡ θ b r cos ⁡ θ ∣ = a b r \left\{\begin{array}{l}x=ar\cos \theta \\y=br\sin \theta\end{array}\right. \Rightarrow D': 0\le r\le \frac{\sqrt{2}}{2}, \theta\in[0,2\pi],J=\begin{vmatrix} a\cos \theta & -ar \sin\theta \\ b\sin \theta & br \cos\theta\end{vmatrix}=abr {x=arcosθy=brsinθD:0r22 ,θ[0,2π],J= acosθbsinθarsinθbrcosθ =abr

V = ∫ 0 2 π d θ ∫ 0 2 2 ( c 1 − r 2 − c r ) ⋅ a b r d r = 2 π a b c ∫ 0 2 2 ( r 1 − r 2 − r 2 ) d r = 2 π a b c ∫ 0 2 2 ( r 1 − r 2 ) d r − 2 π a b c [ 1 3 r 3 ] 0 2 2 = − π a b c [ 2 3 ( 1 − r 2 ) 3 2 ] 0 2 2 − 2 π a b c 6 = − π a b c [ 2 6 − 2 3 ] − 2 π a b c 6 = 2 − 2 3 π a b c \begin{aligned}V & = \int_{0}^{2\pi}d\theta\int_{0}^{\frac{\sqrt{2}}{2}}(c\sqrt{1-r^2}-cr )\cdot abrdr\\&=2\pi ab c\int_{0}^{\frac{\sqrt{2}}{2}}(r\sqrt{1-r^2}-r^2 )dr\\&=2\pi ab c\int_{0}^{\frac{\sqrt{2}}{2}}(r\sqrt{1-r^2} )dr-2\pi abc\left[\frac{1}{3}r^3 \right ]_{0}^{\frac{\sqrt{2}}{2}}\\&=-\pi abc\left[\frac{2}{3}(1-r^2)^{\frac{3}{2}} \right ]_{0}^{\frac{\sqrt{2}}{2}}-\frac{\sqrt{2}\pi abc}{6}\\&=-\pi abc\left[\frac{\sqrt{2}}{6}-\frac{2}{3} \right ]-\frac{\sqrt{2}\pi abc}{6}\\&=\frac{2-\sqrt{2}}{3}\pi abc \end{aligned} V=02πdθ022 (c1r2 cr)abrdr=2πabc022 (r1r2 r2)dr=2πabc022 (r1r2 )dr2πabc[31r3]022 =πabc[32(1r2)23]022 62 πabc=πabc[62 32]62 πabc=322 πabc

3.求圆柱面 x 2 + y 2 = a 2 x^2+y^2=a^2 x2+y2=a2 x 2 + z 2 = a 2 x^2+z^2=a^2 x2+z2=a2所围立体的体积.

解:

D : x 2 + y 2 ≤ a 2 ⇒ − 1 ≤ x ≤ a , − a 2 − x 2 ≤ y ≤ a 2 − x 2 D: x^2+y^2\le a^2\Rightarrow -1\le x\le a, -\sqrt{a^2-x^2}\le y\le \sqrt{a^2-x^2} D:x2+y2a21xa,a2x2 ya2x2

V = ∬ D [ a 2 − x 2 − ( − a 2 − x 2 ) ] d A = 2 ∬ D a 2 − x 2 d A = 2 ∫ − a a d x ∫ − a 2 − x 2 a 2 − x 2 a 2 − x 2 d y = 4 ∫ − a a ( a 2 − x 2 ) d x = 8 ∫ 0 a ( a 2 − x 2 ) d x = 8 a 3 − 8 ∫ 0 a x 2 d x = 8 a 3 − 8 3 a 3 = 16 3 a 3 \begin{aligned}V&=\iint\limits_{D}\left[\sqrt{a^2-x^2}-(-\sqrt{a^2-x^2}) \right]dA\\&=2\iint\limits_{D}\sqrt{a^2-x^2}dA\\&=2\int_{-a}^{a}dx\int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}\sqrt{a^2-x^2}dy\\&= 4\int_{-a}^{a}(a^2-x^2)dx\\&=8\int_{0}^{a}(a^2-x^2)dx \\&=8a^3-8\int_{0}^{a}x^2dx\\&=8a^3-\frac{8}{3}a^3\\&=\frac{16}{3}a^3 \end{aligned} V=D[a2x2 (a2x2 )]dA=2Da2x2 dA=2aadxa2x2 a2x2 a2x2 dy=4aa(a2x2)dx=80a(a2x2)dx=8a380ax2dx=8a338a3=316a3

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值