题1
证明: 无向简单图 G = <V, E>中, Δ (G) < |V| 。
证: 无向简单图G中, Δ(G) = max{deg(v)| v∈ V },
因 G是简单图, 每个顶点只能与 G 中其余|V| - 1 个顶点之间有边,
故 ∀v ∈ V, deg(v) ≤ |V| -1, 即 Δ (G) < |V|。
题2
设G = <V, E>, |V| = n, |E| = n+1. 证明: G中至少有一个顶点的度≥ 3。
证:用反证法,
对于图G, 设G中所有顶点的度 < 3, |V| = n.
2 x |E| = 所有顶点的度数之和 ≤ 2n, |E| ≤ n, 与已知|E| = n+1 矛盾。
所以, G中至少有一个顶点的度≥ 3。
在离散数学, 有一类题型是证明题, 是考试的重要组成部分。