离散数学_第8章图_真题讲解

题1

证明:  无向简单图 G = <V,  E>中,  Δ (G) <  |V| 。

证: 无向简单图G中,  Δ(G) = max{deg(v)| v∈ V },

因 G是简单图, 每个顶点只能与 G 中其余|V| - 1 个顶点之间有边, 

故 ∀v ∈ V,  deg(v) ≤ |V| -1,  即   Δ (G) <  |V|。

题2 

设G = <V,  E>,  |V| = n,  |E| = n+1.  证明:  G中至少有一个顶点的度≥ 3。

证:用反证法,

对于图G, 设G中所有顶点的度 < 3, |V| = n.

2 x |E| = 所有顶点的度数之和  ≤ 2n,  |E| ≤ n,  与已知|E| = n+1 矛盾。

所以,  G中至少有一个顶点的度≥ 3。

 

在离散数学, 有一类题型是证明题, 是考试的重要组成部分。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值