均匀分布

一、概率密度函数和分布函数

分布函数是概率密度函数从负无穷到正无穷上的积分;

在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;

分布函数的函数值y则表示x落在区间(-∞,+∞)上的概率。

二、均匀分布的概率密度函数

假设x服从[a,b]上的均匀分布,则x的概率密度函数如下

概率密度图像如上图所示

三、均匀分布的分布函数

四、均匀分布的期望与方差

### 均匀分布概率密度函数 对于均匀分布而言,其概率密度函数(PDF)表示在给定区间内各个数值发生的可能性相等。假设有一个连续型随机变量 \(X\) 遵循 \([a,b]\) 上的均匀分布,则该变量的概率密度函数可以表达为: 当 \(x\) 属于 \([a, b]\),则有: \[ f(x)=\frac{1}{b-a} \quad a \leqslant x \leqslant b [^1] \] 这意味着,在这个范围内任意选取一点作为观测值时,所获得的结果具有相同的几率;而如果 \(x\) 不在这个范围之内的话,那么对应的概率密度将会等于零。 此公式表明了两个重要特性:一是整个区间的宽度决定了单个位置上的相对频率大小——即越宽广的空间里单位长度上找到目标的机会就越低;二是由于总面积需保持恒定为 1 ,因此随着边界扩大或缩小,高度也会相应调整来满足这一条件[^2]。 ```python import numpy as np from matplotlib import pyplot as plt def uniform_pdf(x,a=0,b=1): """定义一个计算均匀分布pdf的方法""" result = [] for i in x: if i >= a and i<=b : result.append(1/(b-a)) else: result.append(0) return np.array(result) # 绘制图形展示不同参数下的均匀分布形状 fig ,axs=plt.subplots(1,3,figsize=(15,4)) for idx ,(low,high) in enumerate([(0,1),(2,7),(-3,5)]): xs=np.linspace(low-1,high+1,num=1000) ys=uniform_pdf(xs,low,high) axs[idx].plot(xs,ys,label=f'U({low},{high})') axs[idx].set_title(f'a={low},b={high}') plt.legend() plt.show() ``` 通过上述代码绘制出的不同参数设置下均匀分布曲线图可以看出,无论取值范围如何变化,只要是在指定界限内的部分都会呈现出一条水平直线段,这正好反映了所有可能取值拥有相同的发生概率这一特点。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值