先看知识结构图
区间估计,分为 期望的区间估计、 方差的区间估计。
首先讲置信区间, 置信区间在考试时出大题的概率90%。
一 置信区间 定义
定义: 设
σ
\sigma
σ 为总体的未知参数,
θ
^
1
=
θ
^
1
(
x
1
,
x
2
,
.
.
.
,
x
n
)
,
θ
^
2
=
θ
^
2
(
x
1
,
x
2
,
.
.
.
,
x
n
)
\hat \theta_1 =\hat\theta_1(x_1,x_2, ..., x_n), \hat \theta_2 =\hat\theta_2(x_1,x_2, ..., x_n)
θ^1=θ^1(x1,x2,...,xn),θ^2=θ^2(x1,x2,...,xn)是由样本
x
1
,
x
2
,
.
.
.
,
x
n
x_1, x_2, ..., x_n
x1,x2,...,xn定出的两个统计量, 若对于给定的概率 1 —
α
\alpha
α ( 0<
α
\alpha
α < 1), 有
则随机区间[
θ
^
1
\hat\theta_1
θ^1 ,
θ
^
2
\hat\theta_2
θ^2]称为参数
θ
\theta
θ 的置信度为
1
−
α
1-\alpha
1−α 的置信区间,
θ
^
1
\hat\theta_1
θ^1 称为置信下限,
θ
^
2
\hat\theta_2
θ^2 称为置信上限。
注意这里: 1- α \alpha α 称为置信度, [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2] 称为置信区间。
置信区间的意义可作如下解释: θ \theta θ 包含在随机区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2] 中的概率为 1 — α \alpha α。 粗略地说, 若 α \alpha α 等于0.05, 在100次抽样中, 大致有95次 θ \theta θ 包含在 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2]中, 而其余 5 次可能不在该区间。
α \alpha α 常取的数值为 0.05 0.05 0.05, 0.01 0.01 0.01, 此时1— α \alpha α 分别为 0.95 0.95 0.95 , 0.99 0.99 0.99.
注意这样说法:
参数为 ** 的置信度为 ** 的置信区间。
对这种说法,我们要适应,不要管拗口, 我们要学会, 要掌握。
~~~~~~~~
置信区间的长度可视为区间估计的精度。下面分析置信度与精度的关系。
(1)当置信度
1
−
α
1-\alpha
1−α 增大, 又样本容量 n 固定时, 置信区间长度增大, 即区间估计精度减低;
当置信度
1
−
α
1-\alpha
1−α 减小, 又样本容量n固定, 置信区间长度减小, 即区间估计精度提高。
(2) 设置信度
1
−
α
1-\alpha
1−α 固定, 当样本容量n增大时, 置信区间长度减小, 区间估计精度提高。
~~~~~~~~
二 单个正态总体参数的置信区间
2.1
σ
\sigma
σ 已知时
μ
\mu
μ 的置信区间
设总体X~N(
μ
,
σ
2
\mu, \sigma^2
μ,σ2),
σ
2
\sigma^2
σ2 已知,
μ
\mu
μ 未知,
μ
\mu
μ 的置信度为
1
−
α
1-\alpha
1−α 的置信区间为
注:
u
u
u 表示统计量,通常写法为
u
u
u
α
2
_\frac{\alpha}{2}
2α
2.2
σ
\sigma
σ未知时
μ
\mu
μ 的置信区间
此时, t 统计量的自由度为n -1
2.3
σ
\sigma
σ
2
^2
2 的置信区间, 我们只讨论
μ
\mu
μ 未知时
σ
\sigma
σ
2
^2
2的置信区间。
虽然也可以分两种情况。
此时, 卡方统计量 自由度为 n-1.
三 光说不练假把式, 看例题
例1 2008.7
来自正态总体
X
X
X ~
N
(
μ
,
0.81
)
N(\mu, 0.81)
N(μ,0.81), 容量n=9 的简单随机样本, 样本均值为5, 则未知参数
μ
\mu
μ 的置信度为0.95的置信区间是__________(
u
0.025
=
1.96
u_{0.025} = 1.96
u0.025=1.96,
u
0.05
=
1.645
u_{0.05}=1.645
u0.05=1.645)
解: 本题 适用于 2.1 的情形。
统计量
u
=
x
‾
−
μ
σ
/
n
u=\frac{\overline x - \mu}{\sigma/ \sqrt{n}}
u=σ/nx−μ 置信区间, 套用公式:
[
x
‾
−
u
α
2
σ
n
\overline x-u_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}
x−u2αnσ ,
x
‾
+
u
α
2
σ
n
\overline x+u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}
x+u2αnσ ],
由题意已知,
x
‾
=
5
\overline x=5
x=5,
σ
=
0.9
\sigma=0.9
σ=0.9,
μ
α
2
=
1.96
\mu_{\frac{\alpha}{2}}=1.96
μ2α=1.96,
所以 置信区间为 5
∓
\mp
∓ 1.96 * 0.9/3。
~~~~~
例2 2010.10
设某行业的一项经济指标服从正态分布
N
(
μ
,
σ
2
)
N(\mu, \sigma^2)
N(μ,σ2), 其中
μ
,
σ
2
\mu, \sigma^2
μ,σ2 均未知, 今获取了该指标的 9 个数据作为样本, 并算得样本均值
x
‾
=
56.93
\overline x = 56.93
x=56.93, 样本方差
s
2
=
(
0.93
)
2
s^2=(0.93)^2
s2=(0.93)2, 求
μ
\mu
μ 的置信度为0.95的置信区间。 (附
t
0.025
(
8
)
=
2.306
t_{0.025}(8)=2.306
t0.025(8)=2.306)
解: 本题
σ
2
\sigma^2
σ2 未知, 跟上例 不同了。
本题 适用于2.2 的情形。
统计量
t
=
x
‾
−
μ
s
/
n
t =\frac{\overline x -\mu}{s/\sqrt{n}}
t=s/nx−μ, t 的自由度为n-1.
套用公式:
[
x
‾
−
t
α
2
(
n
−
1
)
s
n
\overline x-t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}}
x−t2α(n−1)ns ,
x
‾
+
t
α
2
(
n
−
1
)
s
n
\overline x+ t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}}
x+t2α(n−1)ns]
所以置信区间为 56.93 ∓ \mp ∓ 2.306*0.93/3
要记住: 只要 σ \sigma σ未知, 要得出 μ \mu μ只能用 t 统计量。此时要注意自由度为 n-1.
例3 2007.10 大题, 本题10分
车床加工零件长度 X 服从正态分布 N( μ , σ 2 \mu, \sigma^2 μ,σ2), 现随机抽取 4 个, 测得样本方差 s 2 s^2 s2 = 7.5, 求总体方差 σ 2 \sigma^2 σ2 的置信度为 0.95的置信区间。(附: χ 0.025 2 ( 3 ) = 9.348 , χ 0.975 2 ( 3 ) = 0.216 , χ 0.025 2 ( 4 ) = 11.143 , χ 0.975 2 ( 4 ) = 0.484 \chi_{0.025}^2(3)=9.348, \chi^2_{0.975}(3)=0.216, \chi^2_{0.025}(4)=11.143, \chi_{0.975}^2(4)=0.484 χ0.0252(3)=9.348,χ0.9752(3)=0.216,χ0.0252(4)=11.143,χ0.9752(4)=0.484)
解: 本题 未知
μ
\mu
μ , 求
σ
2
\sigma^2
σ2, 适用于2.3 的情形。
即
χ
2
\chi ^2
χ2分布的置信区间。
χ
2
\chi ^2
χ2的自由度为: n-1, 套用公式:
[
(
n
−
1
)
s
2
χ
α
2
2
(
n
−
1
)
\frac{(n-1)s^2}{\chi^2_{ \frac{\alpha}{2}}(n-1)}
χ2α2(n−1)(n−1)s2 ,
(
n
−
1
)
s
2
χ
1
−
α
2
2
(
n
−
1
)
\frac{(n-1)s^2}{\chi^2_{ 1-\frac{\alpha}{2}}(n-1)}
χ1−2α2(n−1)(n−1)s2 ]
n-1 = 3, 所以附 提供的值,有(4)的都是干扰值。
注意
χ
α
2
2
(
3
)
=
9.348
,
χ
1
−
α
2
2
(
3
)
=
0.216
\chi^2_\frac{\alpha}{2}(3) = 9.348, \chi^2_{1-\frac{\alpha}{2}}(3)=0.216
χ2α2(3)=9.348,χ1−2α2(3)=0.216
所以置信区间=[ 3 * 7.5/9.348, 3*7.5/0.216] = [2.407, 104.17]。
我们要仔细牢记以上3个例题的 公式。
此表,我们必须牢记, 必须掌握!!!