概论_第7章_参数估计__区间估计

文章介绍了置信区间的定义,强调了置信度与精度之间的关系,并通过三个具体的例子展示了在不同情况下(如总体方差已知或未知)如何计算单个正态总体参数的置信区间。此外,文章提供了计算置信区间的公式和使用卡方统计量的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先看知识结构图

在这里插入图片描述
区间估计,分为 期望的区间估计、 方差的区间估计
首先讲置信区间, 置信区间在考试时出大题的概率90%。

一 置信区间 定义

定义: 设 σ \sigma σ 为总体的未知参数, θ ^ 1 = θ ^ 1 ( x 1 , x 2 , . . . , x n ) , θ ^ 2 = θ ^ 2 ( x 1 , x 2 , . . . , x n ) \hat \theta_1 =\hat\theta_1(x_1,x_2, ..., x_n), \hat \theta_2 =\hat\theta_2(x_1,x_2, ..., x_n) θ^1=θ^1(x1,x2,...,xn),θ^2=θ^2(x1,x2,...,xn)是由样本 x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn定出的两个统计量, 若对于给定的概率 1 — α \alpha α ( 0< α \alpha α < 1), 有

P P P{ θ ^ 1 ≤ θ ≤ θ ^ 2 \hat \theta_1\leq \theta \leq \hat\theta_2 θ^1θθ^2} = 1 − α = 1- \alpha =1α

则随机区间[ θ ^ 1 \hat\theta_1 θ^1 , θ ^ 2 \hat\theta_2 θ^2]称为参数 θ \theta θ 的置信度为 1 − α 1-\alpha 1α置信区间, θ ^ 1 \hat\theta_1 θ^1 称为置信下限
θ ^ 2 \hat\theta_2 θ^2 称为置信上限

注意这里: 1- α \alpha α 称为置信度, [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2] 称为置信区间。

置信区间的意义可作如下解释: θ \theta θ 包含在随机区间 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2] 中的概率为 1 — α \alpha α。 粗略地说, 若 α \alpha α 等于0.05, 在100次抽样中, 大致有95次 θ \theta θ 包含在 [ θ ^ 1 , θ ^ 2 ] [\hat\theta_1, \hat\theta_2] [θ^1,θ^2]中, 而其余 5 次可能不在该区间。

α \alpha α 常取的数值为 0.05 0.05 0.05 0.01 0.01 0.01, 此时1— α \alpha α 分别为 0.95 0.95 0.95 , 0.99 0.99 0.99.

注意这样说法:
参数为 ** 的置信度为 ** 的置信区间。

对这种说法,我们要适应,不要管拗口, 我们要学会, 要掌握。

~~~~~~~~
置信区间的长度可视为区间估计的精度。下面分析置信度与精度的关系。
(1)当置信度 1 − α 1-\alpha 1α 增大, 又样本容量 n 固定时, 置信区间长度增大, 即区间估计精度减低
当置信度 1 − α 1-\alpha 1α 减小, 又样本容量n固定, 置信区间长度减小, 即区间估计精度提高

(2) 设置信度 1 − α 1-\alpha 1α 固定, 当样本容量n增大时, 置信区间长度减小, 区间估计精度提高。
~~~~~~~~

二 单个正态总体参数的置信区间

2.1 σ \sigma σ 已知时 μ \mu μ 的置信区间
设总体X~N( μ , σ 2 \mu, \sigma^2 μ,σ2), σ 2 \sigma^2 σ2 已知, μ \mu μ 未知 μ \mu μ 的置信度为 1 − α 1-\alpha 1α 的置信区间为
在这里插入图片描述
注: u u u 表示统计量,通常写法为 u u u α 2 _\frac{\alpha}{2} 2α

2.2 σ \sigma σ未知时 μ \mu μ 的置信区间
此时, t 统计量的自由度为n -1
在这里插入图片描述

2.3 σ \sigma σ 2 ^2 2 的置信区间, 我们只讨论 μ \mu μ 未知时 σ \sigma σ 2 ^2 2的置信区间。
虽然也可以分两种情况。
此时, 卡方统计量 自由度为 n-1.
在这里插入图片描述

三 光说不练假把式, 看例题

例1 2008.7

来自正态总体 X X X ~ N ( μ , 0.81 ) N(\mu, 0.81) N(μ,0.81), 容量n=9 的简单随机样本, 样本均值为5, 则未知参数 μ \mu μ 的置信度为0.95的置信区间是__________( u 0.025 = 1.96 u_{0.025} = 1.96 u0.025=1.96, u 0.05 = 1.645 u_{0.05}=1.645 u0.05=1.645)
解: 本题 适用于 2.1 的情形。
统计量 u = x ‾ − μ σ / n u=\frac{\overline x - \mu}{\sigma/ \sqrt{n}} u=σ/n xμ 置信区间, 套用公式:
[ x ‾ − u α 2 σ n \overline x-u_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} xu2αn σ , x ‾ + u α 2 σ n \overline x+u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} x+u2αn σ ]
由题意已知, x ‾ = 5 \overline x=5 x=5, σ = 0.9 \sigma=0.9 σ=0.9, μ α 2 = 1.96 \mu_{\frac{\alpha}{2}}=1.96 μ2α=1.96,
所以 置信区间为 5 ∓ \mp 1.96 * 0.9/3。
~~~~~

例2 2010.10

设某行业的一项经济指标服从正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2), 其中 μ , σ 2 \mu, \sigma^2 μ,σ2 均未知, 今获取了该指标的 9 个数据作为样本, 并算得样本均值 x ‾ = 56.93 \overline x = 56.93 x=56.93, 样本方差 s 2 = ( 0.93 ) 2 s^2=(0.93)^2 s2=(0.93)2, 求 μ \mu μ 的置信度为0.95的置信区间。 (附 t 0.025 ( 8 ) = 2.306 t_{0.025}(8)=2.306 t0.025(8)=2.306
解: 本题 σ 2 \sigma^2 σ2 未知, 跟上例 不同了。
  本题 适用于2.2 的情形。
统计量 t = x ‾ − μ s / n t =\frac{\overline x -\mu}{s/\sqrt{n}} t=s/n xμ, t 的自由度为n-1.
套用公式:
[ x ‾ − t α 2 ( n − 1 ) s n \overline x-t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} xt2α(n1)n s , x ‾ + t α 2 ( n − 1 ) s n \overline x+ t_{\frac{\alpha}{2}}(n-1)\frac{s}{\sqrt{n}} x+t2α(n1)n s]

所以置信区间为 56.93 ∓ \mp 2.306*0.93/3

要记住: 只要 σ \sigma σ未知, 要得出 μ \mu μ只能用 t 统计量。此时要注意自由度为 n-1.

例3 2007.10 大题, 本题10分

车床加工零件长度 X 服从正态分布 N( μ , σ 2 \mu, \sigma^2 μ,σ2), 现随机抽取 4 个, 测得样本方差 s 2 s^2 s2 = 7.5, 求总体方差 σ 2 \sigma^2 σ2 的置信度为 0.95的置信区间。(附: χ 0.025 2 ( 3 ) = 9.348 , χ 0.975 2 ( 3 ) = 0.216 , χ 0.025 2 ( 4 ) = 11.143 , χ 0.975 2 ( 4 ) = 0.484 \chi_{0.025}^2(3)=9.348, \chi^2_{0.975}(3)=0.216, \chi^2_{0.025}(4)=11.143, \chi_{0.975}^2(4)=0.484 χ0.0252(3)=9.348,χ0.9752(3)=0.216,χ0.0252(4)=11.143,χ0.9752(4)=0.484)

解: 本题 未知 μ \mu μ , 求 σ 2 \sigma^2 σ2, 适用于2.3 的情形。
χ 2 \chi ^2 χ2分布的置信区间。
χ 2 \chi ^2 χ2的自由度为: n-1, 套用公式:
[ ( n − 1 ) s 2 χ α 2 2 ( n − 1 ) \frac{(n-1)s^2}{\chi^2_{ \frac{\alpha}{2}}(n-1)} χ2α2(n1)(n1)s2 , ( n − 1 ) s 2 χ 1 − α 2 2 ( n − 1 ) \frac{(n-1)s^2}{\chi^2_{ 1-\frac{\alpha}{2}}(n-1)} χ12α2(n1)(n1)s2 ]

n-1 = 3, 所以附 提供的值,有(4)的都是干扰值。
注意 χ α 2 2 ( 3 ) = 9.348 , χ 1 − α 2 2 ( 3 ) = 0.216 \chi^2_\frac{\alpha}{2}(3) = 9.348, \chi^2_{1-\frac{\alpha}{2}}(3)=0.216 χ2α2(3)=9.348,χ12α2(3)=0.216

所以置信区间=[ 3 * 7.5/9.348, 3*7.5/0.216] = [2.407, 104.17]。

我们要仔细牢记以上3个例题的 公式。









在这里插入图片描述
此表,我们必须牢记, 必须掌握!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值