SSH服务器CBC加密模式漏洞(CVE-2008-5161)

本文详细介绍了SSH服务器中CBC加密模式的安全隐患,指出其可能允许攻击者恢复明文消息。建议在Linux环境中,尤其是高安全性的生产环境,禁用CBC加密并启用更安全的CTR或GCM模式。修复步骤包括编辑ssh配置文件,更改加密方式,并验证修改是否成功。通过这些措施,可以提高SSH服务的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、漏洞描述

ssh服务器配置为支持密码块链接(cbc)加密。这可能允许攻击者从密文中恢复明文消息。注意,这个插件只检查ssh服务器的选项,不检查易受攻击的软件版本。

CBC(Cipher-block chaining,密码分组链接模式),它具备依赖性,加密过程是串行的,无法被并行化,但是解密可以并行化,因为一个密文会影响到该明文与后一个明文,不会对其他明文产生影响。消息必须是块大小的整数倍,不够需要填充。但无法直接从密文中看出明文信息块的规律,所以安全性比较好。另因密文块依赖于所有的信息块,加密时,若明文块有一个消息改变则影响所有密文块。

一般经过我们的加固,Linux环境中一般都已经采用AES这种算法加密,AES有五种加密模式(CBC、ECB、CTR、OCF、CFB),centos7.x系统启动sshd服务后,系统默认选择CBC的机密模式,在对安全要求比较高的生产环境中,一般是不允许CBC加密的,我们需要将CBC的加密方式修改为CTR或者GCM。

风险级别:低

修复建议:禁用CBC模式密码加密,并启用CTR或GCM密码模式加密。

二、处理过程

1)编辑ssh配置文件

man /etc/ssh/sshd_config  //查看当前支持的加密算法/模式,多个加密算法之间使用逗号分隔

ssh -Q cipher //查看你当前ssh使用的算法

vim /etc/ssh/sshd_config

#Ciphers and keying  注释该行

Ciphers aes128-ctr,aes192-ctr,aes256-ctr  //加密方式配置使用ctr

#也可对指定项目指定,Ciphers 指定 ssh 使能的加密算法。当 Ciphers 的值以 + 字符开始时,指定的加密算法将附加到默认集合,不影响默认集合中的其它算法。当 Ciphers 的值以 ‘-’ 字符开始时,指定的加密算法将会从默认集合中移除,不影响默认集合中的其它项目。

Ciphers -aes128-cbc,aes192-cbc,aec256-cbc,3des-cbc
Ciphers +aes128-ctr,aes192-ctr,aes256-ctr

完成后重启服务:
systemctl stop sshd.service
systemctl start sshd.service

2)验证

nmap --script “ssh2*” 目标ip //没有出现CBC,diffie-hellman-group1-sha1,diffie-hellman-group-exchange-sha1等弱加密算法则成功

非常抱歉,我之前提供的代码存在错误。在 PyTorch 中,并没有直接提供离散余弦变换(DCT)的函数。对于 DCT 的实现,你可以使用 `torch.rfft` 函数结合 DCT 系数矩阵来进行计算。 下面是一个修正后的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义离散余弦变换(DCT)系数矩阵 dct_matrix = torch.zeros(256, 256) for i in range(256): for j in range(256): dct_matrix[i, j] = torch.cos((2 * i + 1) * j * 3.14159 / (2 * 256)) # 定义 OMP 算法 def omp(A, y, k): m, n = A.shape x = torch.zeros(n, 1) residual = y.clone() support = [] for _ in range(k): projections = torch.abs(A.t().matmul(residual)) index = torch.argmax(projections) support.append(index) AtA_inv = torch.linalg.inv(A[:, support].t().matmul(A[:, support])) x_new = AtA_inv.matmul(A[:, support].t()).matmul(y) residual = y - A[:, support].matmul(x_new) x[support] = x_new return x # 加载原始图像 image = torch.randn(256, 256) # 压缩感知成像 measurement_matrix = torch.fft.fft(torch.eye(256), dim=0).real compressed = measurement_matrix.matmul(image.flatten().unsqueeze(1)) # 使用 OMP 进行重构 reconstructed = omp(dct_matrix, compressed, k=100) # 计算重构误差 mse = nn.MSELoss() reconstruction_error = mse(image, reconstructed.reshape(image.shape)) print("重构误差:", reconstruction_error.item()) ``` 在这个示例中,我们手动定义了 DCT 系数矩阵 `dct_matrix`,然后使用 `torch.fft.fft` 函数计算测量矩阵,并进行实部提取。接下来的步骤与之前的示例相同。 请注意,这只是一个示例,用于演示如何使用自定义的 DCT 系数矩阵进行压缩感知成像。在实际应用中,你可能需要根据具体的需求进行调整和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羌俊恩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值