darknet- yolov4 常用命令

本文介绍了YOLOv4在Darknet框架下的训练过程,包括基本命令行参数如`detector train`,以及如何检查精度(mAP@IoU=50,75)。此外,讨论了模型对训练数据集的要求,强调每个目标类别至少有1个相似对象,并建议训练数据集包含不同尺度、旋转、光照和背景的对象。还提到了小目标检测的参数调整,如设置`max_batches`、`steps`和`subdivisions`。最后,提供了模型训练参数优化的链接。" 55189480,5762664,keepalived与LVS构建高可用负载均衡集群,"['负载均衡', '高可用', 'keepalived', 'LVS', '集群']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AlexeyAB/darknet: YOLOv4v / Scaled-YOLOv4 - Neural Networks for Object Detection (Windows and Linux version of Darknet ) (github.com)

Train:

./darknet detector train [dataFile] [cfgFile] [weights] -gpus [number]

 

MAP:

  • To check accuracy mAP@IoU=50: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights
  • To check accuracy mAP@IoU=75: darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75

 

Test image:

./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights

 

模型特性:

  • detector与数据相关性,对于数据库的要求高

for each object which you want to detect - there must be at least 1 similar object in the Training dataset with

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值