1.2.1神经学习
深度学习的神经视角受到两个基本概念的启发:
- 利用大脑创造智能机器。大脑提供了一个例子,证明智能行为是可能的,概念上简单的创造智能的方法是对大脑的计算原理进行逆向工程并复制其功能。
- 使用机器来了解大脑。了解大脑和人类智能的基本原理将是非常有趣的;因此,阐明这些基本科学问题的机器学习模型无论其服务于工程应用的能力如何,都是有价值的。
深度学习的当代概念超越了当前一代机器学习模型的神经科学视角。它采用了一种更通用的学习多层次组合的原则,可以在不一定受神经启发的机器学习框架中实现。尽管如此,我们今天认识的一些最早的学习算法被设计为生物学习的计算模型,或者学习如何在大脑中发生或可能发生的模型。因此,深度学习的名称之一是人工神经网络。
当神经网络模型推断图像的空间和时间不变性时,CV 的新时代可能已经开始。卷积架构依赖于非线性激活函数,将输入数据转换为非线性空间,以确定神经元是否应该激发。它已成功应用于复杂问题的解决,特别是在图像分类、目标检测、动作识别,以及医疗应用。尽管深度 CNN 的大多数研究都集中在分类上,但回归应用的一些工作涉及时间序列预测。
Ian Goodfellow 大量引入了生成对抗网络(Goodfellow 2016),简称 GAN,具有从低水平潜在空间噪声中合成类似真实数据的能力,打开了时尚、艺术和科学等领域神经学习的大门字段。自动编码器是另一种众所周知的知识提取和重建网络类型,经常用于通过最小化重建误差来发现数据集的压缩表示(Patterson 和 Gibson 2017)。从输入数据中提取知识,在维度较少的潜在空间中表示,然后在输出时重建。提取步骤称为编码器,而重建步骤称为解码器。在潜在空间中使用较少的维度迫使网络仅保留最重要的数据,从而形成紧凑的知识库。它经常用于降维(Hinton 和 Salakhutdinov 2006;Wang 等人 2014,2