修改Jupyter Lab、Jupyter Notebook的工作目录

本文指导如何在Anaconda环境下,分别调整JupyterLab和JupyterNotebook的工作目录,从默认用户目录转至D盘,提升文件管理整洁度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        下载好Anaconda后,打开Jupyter Lab或者Jupyter Notebook时,默认的目录是用户目录(C:\Users\...),在这种默认目录里很杂乱,所以更换一下D盘的目录,会更清晰。

下文会分别讲解一下Jupyter Lab 和 Jupyter Notebook 修改目录的方式。

一、修改Jupyter Lab的工作目录

1、直接打开Anaconda Prompt

2、打开后输入 jupyter-lab --generate-config

      执行完命令后,就在如图显示的文件夹下生成 jupyter_lab_config.py 文件。

3、以记事本方式打开 jupyter_lab_config.py

 4、查找ServerApp.root

5、修改代码

        复制c.ServerApp.root_dir = '',在下一行粘贴,并输入自己要修改的路径,如图黄色框中。修改完后一定记得保存,再次打开即可修改目录了。

 二、修改Jupyter Notebook的工作目录

1、直接打开Anaconda Prompt

2、打开后输入  jupyter notebook --generate-config

 执行完命令后,就在如图显示的文件夹下生成 jupyter_notebook_config.py 文件。

3、以记事本方式打开 jupyter_notebook_config.py

4、查找NotebookApp.notebook

5、修改代码

        复制c.NotebookApp.notebook_dir = '',在下一行粘贴,并输入自己要修改的路径,如图黄色框中。修改完后一定记得保存,再次打开即修改目录成功了。

清晰的新目录,大家都有一个好心情呀~

Jupyter NotebookJupyterLab 都是由 Jupyter 计算项目提供的交互式数据科学环境,它们的主要目标都是提供用户友好的环境来编写、运行代码、创建文档和可视化结果。然而,两者之间存在一些显著的区别: 1. **界面设计**:Notebook 是最早的形式,它由一系列 Markdown 文本单元格(包含文本、公式、图表等)和代码单元格(可以执行 Python 代码)组成。而 JupyterLab 是一个更全面的工作区,它引入了更多的界面元素,比如文件浏览器、终端、多种语言支持的编辑器、数据可视化工具和其他插件集成,使得工作流程更加模块化和定制化。 2. **扩展性**:JupyterLab 提供了一个统一的界面,允许加载各种第三方应用(即 Jupyter Widgets 和 Custom Extensions),这使得用户可以根据需求扩展其功能。Notebook 的扩展相对较少,通常需要直接插入外部链接或其他解决方案。 3. **协作和共享**:虽然 Notebook 也是通过 URL 进行在线协作和分享,但在 JupyterLab 中,用户可以直接拖拽笔记本或者整个工作区进行分享,协作体验更为直观。 4. **性能**:由于 JupyterLab 更注重一站式工作台的设计,所以在处理大型数据集或复杂计算任务时,可能会比 Notebook 操作更快或更稳定。 尽管如此,很多用户仍然习惯于 Notebook 的简单易用,并且许多库和教程都基于 Notebook。选择使用哪种取决于个人的需求和偏好。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值