【笔记】欧拉回路与欧拉路径

先放结论

  1. 对于一个无向连通图1
    • 存在欧拉路径的充分必要条件为:度数为奇数的点只有 0 0 0 2 2 2 个。
    • 存在欧拉回路的充分必要条件为:没有度数为奇数的点。
  2. 对于一个有向连通图:
    • 存在欧拉路径的充分必要条件为:
      • 所有点的入度等于出度。
      • 一个点(起点)的出度比入度大 1 1 1,一个点(终点)的入度比出度大 1 1 1,其余点入度出度数量相等。
    • 存在欧拉路径的充分必要条件为:所有点的入度等于出度。

必要条件的证明

显然,上面的结论都是欧拉路径(欧拉回路)的性质,所以必然成立。因此这些结论都是存在欧拉路径的必要条件。

充分条件的证明

先看两种情况:

  1. 对于有一个公共点的线和环,如下图所示:
    此时的欧拉路径为: S → 1 → 3 → 2 → T S \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow T S132T

  2. 对于有一个公共点的两个环,如下图所示:
    此时的一种可行欧拉路径为: S → 1 → 3 → 2 → T S \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow T S132T

那此时一个图就可以看作一条路径和附着在这条路径上的若干个环。

于是我们得出:对于除了起点与终点外的点,由于它们的度数是偶数,则只要它从某一个过环出发,则必然会走完这个环回到这个点。

合并环的方法:有环先走环

证毕。


求欧拉路径

使用算法:DFS

以下是伪代码:

dfs(u)
{
	for 从 u 出发的所有边
		dfs(edge[u]) 扩展
	把 u 加入序列  seq[] ← u
}

执行后 seq[] 就是欧拉路径。

接下来考虑怎么标记访问过的边。

  • 对于有向图,每用一条边就删掉
  • 对于无向图,每用一条边标记对应的反向边(进行 Xor 操作)

  1. 这里连通图定义为所有边都能相互到达。在欧拉回路与欧拉路径中,允许存在孤立的点。有向图的“连通”与此相同。 ↩︎

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星河依旧长明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值