深度学习进阶

转发:https://blog.csdn.net/weixin_41923961/article/details/82721843

 

用深度学习玩图像的七重关卡

许铁-巡洋舰科技2 天前

第一个重境界: 图像识别

 

如果你开始了解深度学习的图像处理, 你接触的第一个任务一定是图像识别 :

比如把你的爱猫输入到一个普通的CNN网络里, 看看它是喵咪还是狗狗。

 

一个最普通的CNN, 比如像这样几层的CNN鼻祖Lenet, 如果你有不错的数据集(比如kaggle猫狗大战)都可以给出一个还差强人意的分类结果(80%多准确率), 虽然不是太高。

 

当然,如果你再加上对特定问题的一些知识, 也可以顺便识别个人脸啥的,开个startup叫face 减减什么:

会玩的, 也可以顺别识别个猪脸什么哒(我觉得长得都一样哦), 这样搞出来每个猪的身份, 对于高质量猪肉的销售, 真是大有裨益的。

或者看看植物都有个什么病害什么的,像这样不同的病斑, 人都懒得看的, 它可以给你看出来。 植物保护的人可以拿着手机下田了。

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2015.

 

虽然植物保护真的很好用,分类问做就了还真是挺无聊的。

我们进化的方向,也就是用更高级的网络结构取得更好的准确率,比如像下图这样的残差网络(已经可以在猫狗数据集上达到99.5%以上准确率)。分类做好了你会有一种成为深度学习大师,拿着一把斧子眼镜里都是钉子的幻觉。 分类问题之所以简单, 一要归功于大量标记的图像, 二是分类是一个边界非常分明的问题, 即使机器不知道什么是猫什么是狗, 看出点区别还是挺容易的, 如果你给机器几千几万类区分, 机器的能力通过就下降了(再复杂的网络,在imagenet那样分1000个类的问题里,都很难搞到超过80%的准确率)。

He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer International Publishing, 2016.

 

第二重境界 : 物体检测

 

很快你发现,分类的技能在大部分的现实生活里并没有鸟用。因为现实中的任务啊, 往往是这样的:

或者这样的:

那么多东西在一起,你拿猫狗大头照训练的分类网络一下子就乱了阵脚。 即使是你一个图片里有一个猫还有一个狗,甚至给猫加点噪声,都可以使你的分类网络分寸大乱。

现实中, 哪有那么多图片, 一个图里就是一个猫或者美女的大图,更多的时候, 一张图片里的东西, 那是多多的, 乱乱的,没有什么章法可言的, 你需要自己做一个框, 把你所需要看的目标给框出来, 然后, 看看这些东西是什么 。

于是你来到机器视觉的下一层挑战 - 目标检测(从大图中框出目标物体并识别), 随之而来的是一个新的网络架构, 又被称为R - CNN, 图片检测网络 , 这个网络不仅可以告诉你分类,还可以告诉你目标物体的坐标, 即使图片里有很多目标物体, 也一一给你找出来。

 

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in neural information processing systems. 2015.

 

万军斩你首级那是杠杠的,在众多路人甲中识别嫌疑犯,也是轻而易举, 安防的人听着要按捺不住了。

今年出现的YOLO算法更是实现了快速实时的物体检测,你一路走过就告诉你视线里都有什么在哪里,要知道这在无人驾驶里是何等的利器。

 

YOLO快速检测法Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

 

当然, 到这里你依然最终会觉得无聊, 即使网络可以已经很复杂, 不过是一个CNN网络(推荐区域),在加上一层CNN网络做分类和回归。 能不能干点别的?

 

第三重境界 : 图像切割

啊哈, 这就来到了第三个关卡, 你不仅需要把图片中边边角角的物体给检测出来, 你还要做这么一个猛料的工作, 就是把它从图片中扣出来。 要知道, 刚出生的婴儿分不清物体的边界, 比如桌上有苹果这种事, 什么是桌子,什么是苹果,为什么苹果不是占在桌子上的? 所以, 网络能不能把物体从一个图里抠出来, 事关它是否真的像人一样把握了视觉的本质。 这也算是对它的某种“图灵测试” 。 而把这个问题简化,我们无非是在原先图片上生成出一个原图的“mask”, 面具,有点像phtoshop里的蒙版的东西。

所谓抠图

Drozdzal, Michal, et al. "The importance of skip connections in biomedical image segmentation." International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer International Publishing, 2016.

注意,这个任务里,我们是要从一个图片里得到另一个图片哦! 生成的面具是另一个图片, 这时候,所谓的U型网络粉墨登场,注意这是我们的第一个生成式的模型。 它的组成单元依然是卷积,但是却加入了maxpooling的反过程升维采样。

 

这个Segmentation任务, 作用不可小瞧哦, 尤其对于科研口的你, 比如现在私人卫星和无人机普及了,要不要去看看自己小区周围的地貌, 看是不是隐藏了个金库? 清清输入, 卫星图片一栏无余。 哪里有树, 哪里有水,哪里有军事基地,不需要人,全都给你抠出来。

 

 

如果你要数个细胞啥的 ,都是挺容易的,给它变成这样的轮廓不就你得了。

 

第四重境界:

我们开始fashion起来, 如果你是淘宝服装小店的老板 ,想让客户输入一张服装的图片,然后得到一组推荐的服装, 来个以图搜图的功能怎么搞呢? 注意啊,我可以从网络上爬一大堆图出来,但是这些数据是没有标注的。怎么办? 铁哥告你还是有的搞,这个搞法,就是聚类。

铁哥教你最简单的一招聚类哦,那就是, 把图片统统放进卷积网络,但是我们不提取分类,而只是提取一些网络中间层的特征, 这些特征有点像每个图片的视觉二维码,然后我们对这些二维码做一个k-means聚类, 也会得到意想不到的效果。 为什么要深度? 因为深度提取的特征,那是与众不同的。

然后以图搜图呢? 不过是找到同一聚类里的其它图片啊。

在聚类的基础上, 就可以做个搜索!

 

第五层境界 :

我们开始晋升为仰望星空的人, 之前那些分类赚钱的应用太无聊了。 机器视觉搞科学怎么港? 作为一群仰望星空后观察细胞的人,我们最常发现的是我们得到的天文或者细胞图片的噪声实在太大了, 这简直没法忍啊, 然后, 深度学习给了你一套降噪和恢复图像的方法。 一个叫auto-encoder的工具, 起到了很大的作用 , 刷的一下,图像就清楚了。

 

这还不是最酷炫的,那个应用了博弈理论的对抗学习, 也可以帮你谋杀噪点! 如果你会对抗所谓GAN, 也是一种图像生成的工具, 让网络去掉噪声的图片,与没有噪声的自然图片, 连卷积网络都判别不出来,对, 就是这样!

Schawinski, Kevin, et al. "Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit." Monthly Notices of the Royal Astronomical Society: Letters 467.1 (2017): L110-L114.

 

 

第六重境界 :

 

在工业界赚够了钱,科学也太nerd了, 我们来玩艺术思考哲学 ,第一招, 图像风格迁移,请见铁哥之前的文章

 

 

然而真正能玩好这一事项的,还是那个刚刚提过的对抗学习GAN, 比如大名鼎鼎的CycleGAN, 几乎可以实现一种你自定义的“图像翻译” 功能,而且你不用做标注哦, 拿出冬天和夏天的两组图片, 它会自动的在两组图片中找出对应来。

 

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." arXiv preprint arXiv:1703.10593 (2017).

 

第七重境界:

 

图像翻译也懒的玩了, 你神经网络不是号称能够理解图像,看你来个无中生有,在噪声里生成图片来?

 

对,依然是GAN,而且是最基础的卷积GAN (DCGAN)就可以给你干出来。

看看GAN所幻想的宾馆情景, 你能想到是计算机做的图吗? 哈哈哈!

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

 

写到这里, 我自己都觉得GAN是非常有前途的,有前途的,有前途的,以前我还以为只是好玩呢。

这里展示的七级浮屠,也不过深度学习被人类discover的冰山一角, 醉卧沙场君莫笑, 古来征战几人回。

深度学习进阶自然语言处理是指在深度学习的基础上,更加深入地应用于自然语言处理领域的技术和方法。它主要包括以下几个方面的内容: 1. 词向量表示:深度学习进阶自然语言处理中,常用的一种技术是将词语表示为向量形式,以便于计算机进行处理。常见的词向量表示方法有Word2Vec、GloVe等。 2. 语言模型:语言模型是自然语言处理中的一个重要任务,它用于预测下一个词语或者句子的概率。深度学习方法可以通过使用循环神经网络(RNN)或者Transformer等模型来建立语言模型。 3. 序列标注:序列标注是指给定一个输入序列,为每个输入元素打上相应的标签。在自然语言处理中,常见的序列标注任务包括命名实体识别、词性标注等。深度学习方法可以通过使用条件随机场(CRF)或者长短时记忆网络(LSTM)等模型来解决序列标注问题。 4. 文本分类:文本分类是指将文本划分到不同的类别中。在自然语言处理中,常见的文本分类任务包括情感分析、垃圾邮件过滤等。深度学习方法可以通过使用卷积神经网络(CNN)或者循环神经网络(RNN)等模型来进行文本分类。 5. 机器翻译:机器翻译是指将一种语言的文本转换为另一种语言的文本。深度学习方法可以通过使用编码-解码模型,如循环神经网络(RNN)或者Transformer等模型来进行机器翻译。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值