引言
无论是功率变换,还是信号变换领域,我们经常都会看到密勒效应、密勒平台,甚至在找硬件工作面试的时候还会被经常问到这么一个问题。那么究竟什么是密勒效应,可能很多小伙伴还一头雾水,没有搞得很清楚,别着急,今天我们来仔细聊一聊。
何谓密勒效应
1920年,由John Milton Miller发表的论文中提到
“Thus the apparent input capacity can become a number of times greater than the actual capacities between the tube electrodes(因此,输入的电容会变为原来的数倍之大)”
这也是我们熟知的密勒效应的定义,即因为密勒效应会使得电容神奇地变大。虽然一般密勒效应指的是电容的放大,但是任何输入与其它高放大节之间的阻抗也能够通过密勒效应改变放大器的输入阻抗。
为什么会这样呢?
我们来看这样一个反向放大器电路,从物理上来解释,当 Vi 上升 ΔV,由于反向放大器的作用,输出 Vo 将下降 AvΔVi 。由于虚断,流经Z的电流都从输入端子 Vi 流出,所以将有 (1+Av)ΔViZ 的输入电流。这就好比杠杆原理,当要翘起一个重物的时候,由于杠杆对力量的放大作用,一端看到的阻力将呈现变小的特性。
因此,所以我们从电路中输入点看入的输入阻抗将变为
Zin=Z/(1+Av)
所以由于密勒效应,输入阻抗变小了,如果阻抗呈现容性,那么从输入端口将看到一个“变大”的电容。
密勒效应的应用
密勒平台
以Buck电路为例,如下图所示。
Buck变换器
在t0-t1 时间内,VGS上升到MOSFET 的阈值电压VG(TH),此时S1开始导通。
在t1-t2时间内,VGS继续上升到密勒平台电压, 漏极电流ID从0 上升,但还未上升到电感电流 。电感上的一部分电流开始流过S1,一部分电流流经S2的体二极管,所以S1的Source电压被钳位到GND,DS电压固定,保持为 Vin 。MOSFET并没有任何放大作用,此时在Gate看入的电容就是Cgs+Cgd。
在t2-t3 时间内,此时MOS电流已经上升至电感电流,二极管D反向截止,MOSFET的漏极电压 VDS 开始下降。此时,MOSFET处于饱和区(VDS较大,Vgs较小,电流固定),因此,此时的MOSFET就相当于一个带电流负载的共源放大器。再套用前文的推导,就可以知道 Cgd会由于放大作用,放大(1+A)倍。此时从驱动gate看进去就是一个很大的电容。由于这个电流的存在,驱动器的驱动能力又是有限的,故gs电压就会呈现一个较小斜率地上升(近似可以认为gs电压基本不变)。等效模态如下图所示。
在t3-t4 时间后,此时DS电压已经下降到0,再次失去放大作用,此时看到的电容又变为Cgs+Cgd。细心的小伙伴可能发现了,t3~t4的斜率明显小于t0~t2,这是由于MOSFET的Ciss电容(Ciss=Cgs+Cgd)的非线性导致的,具体就是电压越高,电容越小。在D电压下降到0之后,Cgd变得更大,所以出现了更小的斜率。
因此,在主管开通的过程中,存在由于密勒效应导致的密勒平台。这顶多是使得开关速度变慢而已,并没有太大危害。
那么这里给读者提出一个问题,刚刚我们讨论的是主管开通过程中的密勒平台的形成。试问,如果二极管使用同步整流,其驱动波形也会出现密勒平台吗?
答案是并不会。对于同步管,其开通之前的死区时间内,电流就会自动环流到体二极管。换言之,是零电压开通的软开关。因此Vgs上升过程之前,Vds已经下降到0,此时MOSFET并没有“放大”能力,自然也就不存在密勒效应。所以软开关的驱动波形就是一条直线,从这个角度来看,软开关对于驱动器的驱动能力要求更低,而同等驱动能力的情况下,开通速度也就越快。
对于密勒电容的误解
我们经常听到有人说,由于密勒电容的存在,会使得对管开通的时候存在误开通的风险,现实真的是这样的吗?
其实这个电容仅仅是 Cgd电容,由于下管的Drain极电压在上管开通的时候,会出现电平跳变,这个dv/dt会通过Cgd电容串到驱动回路中,如果电流比较大,就会在gs上产生一个比较大的电压尖峰,导致下管误开通。由于此时下管完全是关断状态,所以下管根本不会处在放大区,因此也就没有密勒效应什么事了。严格来说造成这个风险的只是Cgd电容而已,并不是密勒电容。可能是因为Cgd是跨接在输入和输出的电容,所以一般大家就习惯性称呼他为密勒电容。但误开通风险的产生其实和密勒效应没有半毛钱关系!
知道原理了寻找解决办法也就很简单了,一般来说,可以减少驱动电阻或者Cgd/Cgs的管子,或者在MOSFET栅源之间并上一个电容,降低dv/dt在驱动上产生的电压即可。
密勒补偿
任何事物都是有两面性,只有清楚了其本质才能利用它,密勒效应亦是如此。
我们知道,平板电容的大小正比于面积,这就意味着大电容往往需要比较大的面积,利用密勒效应就可以将一个小电容变成一个等效的大电容,正所谓四两拨千斤!我们知道,在集成电路中寸土寸金,实现大容值的电容需要相当大的面积!这个时候密勒效应就开始发挥它神奇的效果了!
举个栗子,在两级运放中,会存在至少两个极点,如果都在带宽内,其GB处的相位裕度就相当小(基本为0),如下图中虚线的波特图所示。
此时如果在第二级的输入和输出之间跨接一个小电容,如下图所示的Cc。由于第二级的放大 Av2 的存在, Cc 会被放大 1+Av 倍,从而在结点E建立了一个比较大的电容。结果,以一个较小的电容实现了低频的极点,节省了芯片的面积。
密勒补偿
高频性能更好的Cascode结构
这里再多扯一嘴,对于单级运放,使用普通的共源放大器,会由于密勒效应无法实现比较高的带宽,就是因为Cgd在密勒效应下等效为一个比较大的电容,使得出现了一个比较低频的极点,降低了带宽。
而为什么cascode结构具有比较好的高频性能,则是由于,A点看入的阻抗为 1gm1 ,比较小,因此从Vin到A点的增益为 gm2∗1/(gm1) ,为一个很小的值。故从 Vin 到A点的增益并不大,因此密勒效应导致的电容变大没有那么明显。
写在最后
聊到这里,相信大家对什么是密勒效应以及其都有哪些应用有了比较全面的认识。还是那句话,任何事物都是具有两面性的,只是看我们如何如看待它!
最后大家喜欢我的文章的话,麻烦点赞收藏关注一键三连!