hdu2197

本原串

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 445    Accepted Submission(s): 145


Problem Description
由0和1组成的串中,不能表示为由几个相同的较小的串连接成的串,称为本原串,有多少个长为n(n<=100000000)的本原串?
答案mod2008.
例如,100100不是本原串,因为他是由两个100组成,而1101是本原串。
 

Input
输入包括多个数据,每个数据一行,包括一个整数n,代表串的长度。
 

Output
对于每个测试数据,输出一行,代表有多少个符合要求本原串,答案mod2008.
 

Sample Input
  
  
1 2 3 4
 

Sample Output
  
  
2 2 6 12
 

分析:长度为n的本源串=2^n-长度为n的非本源串,对于长度为n的非本源串一定是由长度为m的串循环k次得到的,所以m一定是n的约数,所以只需要求到所有n的约数长度构成的本源串个数即可(不能求构成串之和,因为可能重复相加了,比如x是m的约数,则x一定是n的约数,则m的串包含x,只能m得本源串+x的本源串)所以n的本源串个数sum[n]=2^n-(sum[x1]+sum[x2]+....sum[m]+...)-2;//x1,x2...m...是n的不为1的约数

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std;

const int MAX=10000+10;
const int mod=2008;

int pow(int a,int b){
	int sum=1;
	while(b){
		if(b&1)sum=(sum*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return sum;
}

int get(int n){
	if(n == 1)return 2;//返回本源串个数
	int sum=0;
	for(int i=2;i*i<=n;++i){
		if(n%i == 0){
			sum=(sum+get(i))%mod;
			if(n/i != i)sum=(sum+get(n/i))%mod;
		}
	}
	return (pow(2,n)-sum-2+mod)%mod;
}

int main(){
	int n;
	while(cin>>n){
		cout<<get(n)<<endl;
	}
	return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值