Hive 的使用操作方法-表创建,删除,分区的增删,修改表结构,重命名,行列互转和sql查询
做大数据或数据分析的人员应该都非常熟悉Hive吧,它是一款强大的数据分析工具,就是类sql查询语句,可以把复杂的MapReduce任务转换为sql查询,方便了数据分析人员快速定位分析结果。hive是Apache软件基金会的开源的数据分析工具,功能强大,包括直接分析出结果,做ETL中的数据清洗,预处理等等。
本文不讲述hive如何下载,安装,配置,具体的操作网上都有的,可以查询到。本文以介绍hive的表创建,删除,增加表分区,删除表分区,表结构的修改,重命名和行列互转,包括一些常用的sql函数。
1. hive表创建(和一般关系数据库的语法基本一致)
目录
Hive 的使用操作方法-表创建,删除,分区的增删,修改表结构,重命名,行列互转和sql查询
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT row_format] [STORED AS file_format] [LOCATION hdfs_path]
对于创建表的语句说明:
CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常。
EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive 创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
LIKE 允许用户复制现有的表结构,但是不复制数据。
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
有分区的表可以在创建的时候使用 PARTITIONED BY 语句。一个表可以拥有一个或者多个分区,每一个分区单独存在一个目录下。而且,表和分区都可以对某个列进行 CLUSTERED BY 操作,将若干个列放入一个桶(bucket)中。也可以利用SORT BY 对数据进行排序。这样可以为特定应用提高性能。
表名和列名不区分大小写,SerDe 和属性名区分大小写。表和列的注释是字符串 。
2 删除表和表结构的修改
Drop Table
删除一个内部表的同时会同时删除表的元数据和数据。删除一个外部表,只删除元数据而保留数据。
Alter Table
Alter table 语句允许用户改变现有表的结构。用户可以增加列/分区,改变serde,增加表和 serde 熟悉,表本身重命名。
Add Partitions
ALTER TABLE table_name ADD
partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ...
partition_spec:
: PARTITION (partition_col = partition_col_value,
partition_col = partiton_col_value, ...)
用户可以用 ALTER TABLE ADD PARTITION 来向一个表中增加分区。当分区名是字符串时加引号。
ALTER TABLE page_view ADD
PARTITION (dt='2008-08-08', country='us')
location '/path/to/us/part080808'
PARTITION (dt='2008-08-