LangChain+ChatGLM基本原理及私有化部署

一、LangChain
1.作用:用于提升大型语言模型(LLMs)功能的框架,能够让大型语言模型结合外部的计算和数据源,并根据信息执行指定操作。
结合LLM大模型外部数据等,外部工具及数据等实现特定文档问答、聊天机器人、代理执行任务以及文本摘要。
2.核心组件:
Prompts(提示): 管理LLM输入工具
Compents(组件):为LLMs提供接口封装、模板提示和信息检索索引;
Chains(链):能将LLM与其他组件如外部API、数据库等连接起来组合起来解决复杂任务流程,如在大量文本中查找信息;
Agents(代理):使用LLM决策的工具,执行特定任务并生成文本输出,通常由动作、观察和决策三部分组成。
Memory(记忆):用来存储先前输入、输出或其他信息,保存记忆多次调用上下文或历史数据。
3.执行流程:
用户问题->语言模型生成向量->向量数据库搜索相似->语言模型->根据结果执行操作
二、ChatGLM
1.GLM框架:
整体基于Transformer基础三个微小改动:
重新排列了层归一化和残差连接的顺序、针对token的输出预测使用单一线性层、用GeLU替换ReLU激活函数。
2. 应用场景:
基于 GLM(Generative Language Model)的自然语言处理模型,它具备强大的文本生成能力和语义理解能力,可以为用户提供高质量的对话体验。

三、安装部署

  1. ChatGLM环境要求
    硬件配置:
    Int4 版本的 ChatGL
### 本地部署 LangChainChatGLM 知识库 为了实现基于 LangChainChatGLM私有化知识库部署,企业和机构可以获得一个高效、安全、可控的知识管理解决方案[^1]。 #### 准备工作环境 确保安装了必要的依赖项和工具链。通常这包括 Python 及其开发包、Git 工具以及其他可能需要的软件组件。 #### 获取 ChatGLM-6B 模型 要开始本地部署过程,需先获取 `chatglm-6b` 模型文件。通过 Git 命令可以从 GitHub 上克隆仓库来获得该模型: ```bash git clone https://huggingface.co/THUDM/chatglm-6b ``` 此操作会下载整个项目到当前目录下,并创建名为 `chatglm-6b` 的新文件夹用于存储模型及相关资源[^2]。 #### 安装所需库 接下来,在环境中安装运行所需的 Python 库。推荐使用虚拟环境隔离不同项目的依赖关系。可以通过 pip 或 conda 来完成这些库的安装。对于本案例来说,至少应该包含 transformers, langchain 等核心库。 ```bash pip install transformers langchain torch ``` #### 配置应用服务 配置应用程序的服务端部分,使其能够加载并利用上述模型处理请求。这部分涉及到编写 API 接口代码以及设置 Web 服务器等任务。LangChain 提供了一系列接口函数帮助开发者快速搭建起这样的系统框架。 #### 测试与优化 最后一步是对已构建好的平台进行全面测试,验证各项功能是否正常运作;同时针对性能瓶颈做出相应调整以提高效率和服务质量。由于私有化部署允许高度自定义,因此可根据实际应用场景灵活修改参数设定或扩展额外特性[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值