一、LangChain
1.作用:用于提升大型语言模型(LLMs)功能的框架,能够让大型语言模型结合外部的计算和数据源,并根据信息执行指定操作。
结合LLM大模型外部数据等,外部工具及数据等实现特定文档问答、聊天机器人、代理执行任务以及文本摘要。
2.核心组件:
Prompts(提示): 管理LLM输入工具
Compents(组件):为LLMs提供接口封装、模板提示和信息检索索引;
Chains(链):能将LLM与其他组件如外部API、数据库等连接起来组合起来解决复杂任务流程,如在大量文本中查找信息;
Agents(代理):使用LLM决策的工具,执行特定任务并生成文本输出,通常由动作、观察和决策三部分组成。
Memory(记忆):用来存储先前输入、输出或其他信息,保存记忆多次调用上下文或历史数据。
3.执行流程:
用户问题->语言模型生成向量->向量数据库搜索相似->语言模型->根据结果执行操作
二、ChatGLM
1.GLM框架:
整体基于Transformer基础三个微小改动:
重新排列了层归一化和残差连接的顺序、针对token的输出预测使用单一线性层、用GeLU替换ReLU激活函数。
2. 应用场景:
基于 GLM(Generative Language Model)的自然语言处理模型,它具备强大的文本生成能力和语义理解能力,可以为用户提供高质量的对话体验。
三、安装部署
- ChatGLM环境要求
硬件配置:
Int4 版本的 ChatGL