class Solution:
"""
63. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
"""
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
# 思路:和62题相似,使用动态规划思想,求状态转移方程;特殊点在于存在障碍时f[i][j]为0
# 1. 初始化及特殊处理
m = len(obstacleGrid)
n = len(obstacleGrid[0])
# 易错点:注意m、n关系
# 初始化的同时已将有障碍的地方置为0, 后续只需处理无障碍的地方
f = [[0]*n for _ in range(m)]
# 2. 遍历求状态转移方程
for i in range(m):
for j in range(n):
# 存在障碍时跳过
if obstacleGrid[i][j] == 1: continue
# 行索引和列索引都为零时
if not i and not j:
f[i][j] = 1
# 行索引不为0,列索引为0
elif i and not j:
f[i][j] = f[i-1][j]
# 行索引为0,列索引不为0
elif not i and j:
f[i][j] = f[i][j-1]
# 行索引不为0,列索引也不为0
else:
f[i][j] = f[i-1][j] + f[i][j-1]
# 3. 返回结果值
return f[m-1][n-1]
leetcode第63题python版不同路径II动态规划法
最新推荐文章于 2024-09-16 13:43:24 发布