初学机器学习

概念

从大量数据中进行学习的算法,目的不是找到一个通用的学习算法或者绝对好的学习算法,而是关注数据的分布与通过机器学习获取的经验是否能更好的与“真实世界”相关

分类

1、无监督学习

根据提供的含有很多特征的数据集,进行分类、计算等学习,得到对这些数据集的有用的结构性质

2、监督学习

与无监督学习相比,在提供的数据集中多了标签或者目标等人为的一些提示

学习过程的挑战

容量指模型拟合各种函数的能力

1、过拟合(overfitting)

容量高就出现过拟合

2、欠拟合(underfitting)

容量低就出现欠拟合
在这里插入图片描述

在这里插入图片描述

需要找到最佳的容量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值