概念
从大量数据中进行学习的算法,目的不是找到一个通用的学习算法或者绝对好的学习算法,而是关注数据的分布与通过机器学习获取的经验是否能更好的与“真实世界”相关
分类
1、无监督学习
根据提供的含有很多特征的数据集,进行分类、计算等学习,得到对这些数据集的有用的结构性质
2、监督学习
与无监督学习相比,在提供的数据集中多了标签或者目标等人为的一些提示
学习过程的挑战
容量指模型拟合各种函数的能力
1、过拟合(overfitting)
容量高就出现过拟合
2、欠拟合(underfitting)
容量低就出现欠拟合
需要找到最佳的容量