一、神经网络跟线性回归比较:
1.计算输出的方式:
线性回归基本就是解释变量(输入)的线性组合再加一个随机扰动项就得到输出;而神经网络是每个神经元(除去输入层神经元)都将输入进行线性组合再加一个随机扰动项(偏置,阈值的相反数)之后再用一个激活函数(逻辑函数)进行变换作为输出,依次进行,直到进行到输出层。
2.对参数值的估计:
线性回归一般用的是最小二乘估计法,而神经网络的是梯度下降法(目前学习到的方法)。感觉这两种方法的思想都是一样的,即使得模型估计的输出与期望输出之间的误差尽可能的小。
对于有一组样本,线性回归使用误差平方和最小;而神经网络是针对一个样本,算一个二次损失函数(MSE),j再将这组样本算出来的n个二次损失函数求平均值,目标是这个损失函数最小。
二、梯度下降与随机梯度下降
损失函数可以看做关于参数的多元函数,而多元函数C:ΔC = ∇C * Δv,所以就要用梯度下降法来估计参数(沿着梯度方向,函数增长最快;沿着梯度反向,函数减小最快)。损失函数计算的是平均值,所以也要针对每一个样本计算梯度,然后计算平均值,当样本数量过大的时候,这是非常消耗时间的,所以出现了随机梯度下降,即将n个样本随机分成 n/m 批小批量数据(小批量数据是m个样本),再循环利用每一批小批量数据去更新参数。
最近学习神经网络的一点总结
最新推荐文章于 2023-12-24 23:01:38 发布