从任一给定的正整数 n 出发,将其每一位数字相乘,记得到的乘积为 n1。以此类推,令 ni+1 为 ni 的各位数字的乘积,直到最后得到一个个位数 nm,则 m 就称为 n 的持续性。例如 679 的持续性就是 5,因为我们从 679 开始,得到 6×7×9=378,随后得到 3×7×8=168、1×6×8=48、4×8=32,最后得到 3×2=6,一共用了 5 步。
本题就请你编写程序,找出任一给定区间内持续性最长的整数。
输入格式:
输入在一行中给出两个正整数 a 和 b(1≤a≤b≤109 且 (b−a)<103),为给定区间的两个端点。
输出格式:
首先在第一行输出区间 [a,b] 内整数最长的持续性。随后在第二行中输出持续性最长的整数。如果这样的整数不唯一,则按照递增序输出,数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
500 700
输出样例:
5
679 688 697
思路:
1.用函数记录从a到b之间每个数的连续性,避免超时;
2.此题涉及到输出持续性最长所对应的整数以及如果整数不唯一,则按照递增序输出对应的整数----->>>>有对应关系,因此可以采用结构体来记录
3.含结构体的对应关系,因此排序用sort函数
#include<bits/stdc++.h>
using namespace std;
struct shu
{
int x;
int y;
}lian[1005];
bool cmp(shu a,shu b)
{
if(a.y==b.y)return a.x<b.x;
else return a.y>b.y;
}
int c=0; //每个数对应的连续性,c作为地址
void solve(int i)
{
int k=0;
lian[++c].x=i;
while(i>9)
{
int t=1;
while(i){
t*=i%10;
i=i/10;
}
k++;
i=t; //将结果又赋给i,进入下一次循环
}
lian[c].y=k; //记录每个数对应的连续性
}
int main()
{
int a,b;
cin>>a>>b;
for(int i=a;i<=b;i++)
{
solve(i);
}
sort(lian+1,lian+1+c,cmp);
cout<<lian[1].y<<endl;
cout<<lian[1].x; //先都打印出排在第一位的数的数
for(int i=2;i<=c;i++)
{
if(lian[i].y==lian[1].y)cout<<" "<<lian[i].x;
}
return 0;
}