K-means聚类
无监督机器学习算法,用于将一组数据集分为K个预设数量的类别。其基本思想是迭代地将每个数据点分配到最近的质心(代表当前类别中心),然后更新所有质心的位置为新分配的数据点的均值。
优点:
简单快速:计算成本低,适合大数据集。
易于理解:直观的迭代过程可以提供对数据结构的洞察。
广泛应用:常用于图像分割、市场细分等场景。
缺点:
需要预先设定K值:如果选择不当,可能导致聚类结果不佳。
对初始质心敏感:不同的初始质心可能导致不同的最终聚类结果。
只适用于凸形状的簇:非球形或多边形的数据可能会有较差的表现。
不适用噪声和异常值:这些数据点可能会影响聚类效果。
实现原理:
初始化K个随机质心。
将每个数据点分配给与其距离最近的质心所在的组。
更新每个组的质心为该组所有数据点的平均值。
重复步骤2和3直到质心不再改变,或者达到预定的迭代次数。
实际应用:
图像处理:颜色分段、特征提取
社交网络分析:用户群划分
数据挖掘:客户分类、产品推荐
Python实现示例(简化版):
Python
from sklearn.cluster import KMeans
import numpy as np
# 假设有如下二维数据
data = np.array([[...], [...], ...]) # 填充实际数据
# 定义KMeans模型并设置K值
kmeans = KMeans(n_clusters=K, init='random', max_iter=300)
# 拟合数据
kmeans.fit(data)
# 获取聚类结果
labels = kmeans.labels_
# 获取质心
centroids = kmeans.cluster_centers_
# 输出相关问题--