简述图像归一化

 # 图像归一化,将图像的各像素值归一化到0~1区间。
        train_images /= 255
        test_images /= 255

在深度学习中,对数据进行归一化是为了将特征值尺度调整到相近的范围。

如果不归一化,尺度大的特征值,梯度也比较大,尺度小的特征值,梯度也比较小,而梯度更新时的学习率是一样的,如果学习率小,梯度小的就更新慢,如果学习率大,梯度大的方向不稳定,不易收敛,通常需要使用最小的学习率迁就大尺度的维度才能保证损失函数有效下降,因此,通过归一化,把不同维度的特征值范围调整到相近的范围内,就能统一使用较大的学习率加速学习。因为图片像素值的范围都在0~255,图片数据的归一化可以简单地除以255。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值