# 图像归一化,将图像的各像素值归一化到0~1区间。
train_images /= 255
test_images /= 255
在深度学习中,对数据进行归一化是为了将特征值尺度调整到相近的范围。
如果不归一化,尺度大的特征值,梯度也比较大,尺度小的特征值,梯度也比较小,而梯度更新时的学习率是一样的,如果学习率小,梯度小的就更新慢,如果学习率大,梯度大的方向不稳定,不易收敛,通常需要使用最小的学习率迁就大尺度的维度才能保证损失函数有效下降,因此,通过归一化,把不同维度的特征值范围调整到相近的范围内,就能统一使用较大的学习率加速学习。因为图片像素值的范围都在0~255,图片数据的归一化可以简单地除以255。