Python爬虫技术教程——抓取A股实时数据!

本文介绍了如何使用Python的urllib库从东方财富网抓取A股实时数据,包括获取URL、编写爬虫代码并保存为CSV文件的过程,适合初学者快速入门网络爬虫技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量化金融技术日新月异,数据就等于是新时代的石油。对于投资者和数据分析师来说,获取准确的股票历史数据是至关重要的。

接下来编程君手把手教会你,如何用Python自带的urllib库的request函数,从东方财富网爬取A股实时数据,并将其保存为本地的csv文件。

先给大家介绍下这本**《用Python写网络爬虫》书籍.pdf资料**,这本书编程君是强烈推荐,适合有一定Python基础,而且对爬虫技术感兴趣的学员,它能帮助你快速上手爬虫限时扫码,免费领取!

扫描下方图片二维码

先领先用,快人一步

(内部学员联系专属辅导员即可)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

一、确定爬虫目标

本次爬虫案例我们使用中国散户的聚集地——东方财富网站的A股实时数据作为爬虫目标

在东方财富网站的“行情中心”----“沪深京个股”选项卡下,有当前所有A股的实时数据:

现在我们就来尝试抓取他们。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

二、获取URL

Python自带的

### 如何用Python编写爬虫抓取历史数据用于预测分析 要实现使用Python编写的爬虫抓取历史数据并进行预测分析,可以从以下几个方面入手: #### 1. 安装必要的库 为了完成这一任务,需要安装一些常用的Python库。以下是推荐的依赖项及其用途: - `requests` 和 `BeautifulSoup`: 用于网页解析和HTML提取。 - `pandas`: 提供高效的数据结构支持数据分析。 - `matplotlib`, `seaborn`: 可视化工具,帮助理解数据分布。 - `scikit-learn`: 实现机器学习算法,构建预测模型。 可以通过以下命令安装所需库[^4]: ```bash pip install requests beautifulsoup4 pandas matplotlib seaborn scikit-learn yfinance ``` --- #### 2. 抓取历史数据 对于特定领域的历史数据(如票市场),可以直接利用现有的API接口简化开发流程。例如,`yfinance` 是一个强大的第三方库,能够轻松获取金融市场的公开数据。 下面是一个简单的代码示例,演示如何使用 `yfinance` 获取某只票的历史价格数据: ```python import yfinance as yf import pandas as pd # 设置目标票代码 (e.g., AAPL 表示苹果公司) stock_symbol = 'AAPL' # 下载指定时间段内的历史数据 data = yf.download(stock_symbol, start='2020-01-01', end='2023-01-01') # 将数据保存至CSV文件 data.to_csv(f'{stock_symbol}_historical_data.csv') print(data.head()) ``` 如果涉及其他类型的历史数据(比如天气记录),则可能需要手动发送HTTP请求访问对应站点,并借助正则表达式或 BeautifulSoup 解析页面内容[^5]。 --- #### 3. 数据清洗与预处理 原始数据通常存在缺失值、异常点等问题,在建模前需对其进行清理。Pandas 库提供了丰富的功能辅助此过程。例如,删除重复行、填补空缺字段或者转换时间戳格式等操作均能显著提升后续计算效率[^3]。 一段典型的数据清洗脚本如下所示: ```python import pandas as pd # 加载已下载的数据集 df = pd.read_csv('weather_historical_data.csv') # 去除多余的列 columns_to_drop = ['Unnamed: 0'] if any(col in df.columns for col in columns_to_drop): df.drop(columns=columns_to_drop, inplace=True) # 替换错误标记 (-9999) 为 NaN 并填充最近的有效观测值 df.replace(-9999, pd.NA, inplace=True) df.fillna(method="ffill", inplace=True) # 转换日期列为 datetime 类型 df['Date'] = pd.to_datetime(df['Date']) # 输出整理后的表格概览 print(df.info(), "\nSample Data:\n", df.head(5)) ``` --- #### 4. 构建预测模型 经过充分准备之后,就可以着手训练回归类别的监督学习器了。这里列举两种常见方法作为参考案例——线性回归和支持向量机(SVM)[^2]。 ##### 方法 A: 线性回归 适用于关系较为平稳的时间序列变量之间建立联系的情况。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error X = df[['Open', 'High', 'Low']] # 特征集合 y = df['Close'] # 目标标签 # 划分训练集/测试集比例8:2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model_lr = LinearRegression() model_lr.fit(X_train, y_train) predictions = model_lr.predict(X_test) error = mean_squared_error(y_test, predictions)**0.5 print(f'Linear Regression RMSE Error: {error:.2f}') ``` ##### 方法 B: 支持向量机 当面对复杂模式识别需求时可考虑采用SVM技术解决分类难题。 ```python from sklearn.svm import SVR svr_rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1) svr_lin = SVR(kernel='linear', C=100, gamma='auto') svr_poly = SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1) non_linear_models = [svr_rbf, svr_lin, svr_poly] for idx, clf in enumerate(non_linear_models): clf.fit(X_train.values.reshape(-1, 1), y_train) prediction_svr = clf.predict(X_test.values.reshape(-1, 1)) error_svr = ((prediction_svr - y_test)**2).mean() ** .5 print(f'SVR Model ({idx}) Root Mean Squared Error:', round(error_svr, 2)) ``` --- #### 总结 上述步骤涵盖了从环境搭建到最终评估整个工作流的关键环节。值得注意的是实际应用过程中还需综合考量多种因素影响效果优化方向[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值