7.Brief introduction of Deep Learning

深度学习的历史

深度学习基本结构

       深度学习类似之前的机器学习,也可以分为简单的三步

       给定一个神经网络结构,也就是定义了一个函数集,给这个神经网络不同的权重也对应着不同的函数,我们要做的不断调整权重以找到我们想要的最好的函数

       神经网络可以分为三部分,输入层,隐藏层,输出层,从字面自已我们大致可以知道,第一个层就是输入层,最后一层即输出层,在输入层与输出层之间的即为隐藏层

       Deep的含义就是神经网络包含很多隐藏层,从下图大致可以看出神经网络越深,一般效果越好

       每个神经元实际上是一个线性变换加上一个sigmoid函数(上一次笔记有讲),线性变换我们可以用矩阵运算来描述

       于是整个神经网络是由好多线性变换和好多sigmoid函数组合而成

       我们可以用平行运算来加速矩阵操作,而这正是GPU的长处

       隐藏层的工作实际上是特征提取

深度学习应用举例

       例如在手写数字辨识中我们可以用neural network来实现,通过输出来判别属于哪个数字

        网络结构都需要自己设计

       然后我们需要做的是找到一组参数,使得loss function最小

        怎样计算Loss?当然还是之前采用的梯度下降的方法。

       对于神经网络有一个理论:任何连续的函数f都可以用只有一个隐藏层的网络表示出来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值