机器学习算法
文章平均质量分 50
Drone_xjw
您的支持是我不竭的动力!
展开
-
keras小应用(神经网络、CNN、RNN、绘制网络结构)
课程链接:https://www.bilibili.com/video/BV1Ct411H7rm?p=12&t=3 这里写目录标题01线性回归02非线性回归03mnist数据集分类04 交叉熵和Dropout06正则化+07优化器08CNN手写数字识别09RNN应用10绘制网络结构 01线性回归 import tensorflow.keras import numpy as np import matplotlib.pyplot as plt # Sequential按顺序构成的模型 from .原创 2021-03-05 09:56:51 · 238 阅读 · 2 评论 -
keras入门-训练准确率出现不同的值
# 评估模型 loss,accuracy = model.evaluate(x_test,y_test) print('\ntest loss',loss) print('\ntest accuracy',accuracy) loss,accuracy = model.evaluate(x_train,y_train) print('\ntrain loss',loss) print('\ntrain accuracy',accuracy) 都是训练数据集,出现两个不同的值原因: 0.9542是在Do原创 2021-03-05 09:47:20 · 416 阅读 · 2 评论 -
tensorflow笔记第六讲RNN
我们通过上一讲的CNN,可以知道,CNN是依据于尺寸不变性,平移不变性,旋转不变性。空间共享,通过不同位置的参数共享 那么接下来,我们来学习时间共享,通过不同时刻的参数共享。 目录循环核循环横向 按时间展开循环计算层TF描述循环计算层循环计算过程Embedding编码RNN实现股票预测LSTMGRU网络 循环核 循环核:参数时间共享,循环层提取时间信息。 记忆体内存储的状态信息ht,在每个时刻都被更新 循环横向 按时间展开 循环计算层 TF描述循环计算层 return_sequences.原创 2020-09-05 11:56:34 · 404 阅读 · 0 评论 -
tensorflow笔记第五讲CNN
目录引入卷积感受野全零填充tensorflow描述卷积层函数tf.ketas.layers.conv2D批标准化池化Poolingtf.keras.layers.MaxPool2D函数舍弃 DropoutCNN总结Cifar10数据集搭建卷积网络经典卷积网络LeNetLeNet核心代码AlexNetAlexNet核心代码VGGNet 2014InceptionNet 2014InceptionNet核心实现ResNet两个相加维度不同代码展示总结 引入 全连接NN参数过多,待优化参数过多容易导致模型过拟合原创 2020-09-04 12:38:49 · 185 阅读 · 0 评论 -
tensorflow学习笔记第四讲
目录数据增强tf.keras.preprocessing.image.ImageDataGenerator()断点续训提取可训练参数可视化准确率上升和损失下降训练代码给图识物 数据增强 tf.keras.preprocessing.image.ImageDataGenerator() 断点续训 把上次训练好的模型保存起来,然后再执行一遍代码,可以在上次的结果基础上继续寻找最好的。 提取可训练参数 查看保存模型的参数是多少 可视化准确率上升和损失下降 画图代码 # 显示训练集和验证集的a原创 2020-09-03 15:55:34 · 180 阅读 · 0 评论 -
tensorflow笔记第三讲
目录八股搭建神经网络六步法sequential 相当于网络容器compile()指定优化器、损失函数model.fit()model.summary()class MyModel(Model) model = MyModelMNIST数据集FASHION数据集 八股搭建神经网络 六步法 导入函数包,指定训练集测试集,设定模型,指定损失函数和优化器,告知迭代多少次数据集,打印网络结构和参数统计。 sequential 相当于网络容器 这里主要描述从输入层到输出层的网络结构 compile()指定优原创 2020-09-02 17:55:09 · 145 阅读 · 0 评论 -
tensorflow笔记第二讲
目录P1tf.where()函数,类似三目运算符np.random.RandomState.rand()生成随机数(0-1之间)np.vstack()两个数组纵向叠加这里构成网格图的函数学习率的指数衰减激活函数sigmoid函数Tanh函数Relu函数Leaky Relu函数激活函数选取建议损失函数loss均方误差自定义损失函数交叉熵实际上的softmax与交叉熵结合拟合问题正则化缓解参数优化器SGD 无动量的常用梯度下降法SGDM 在SGD基础上增加了一阶动量Adagrad, 在SGD基础上增加二阶动量R原创 2020-09-02 16:40:52 · 193 阅读 · 0 评论 -
TensorFlow学习笔记第一讲
目录P1TensorFlow2.1安装P4P5常用函数cast数据类型转换计算最大值reduce_max(),计算最小值reduce_min()axis函数,axis等于0是对第一个维度操作,在表格中是纵向操作。非常 常用函数 tf.Variable数学运算输入特征和标签配对 from_tensor_splices梯度求导运算tf.GradientTape枚举索引和元素 enumerate常用的one-hot(独热编码)tf.nn.softmax函数使n分类的n个输出通过softmax函数符合概率分布自减操原创 2020-09-02 09:53:33 · 331 阅读 · 0 评论 -
深度学习神经网络思维的Logistic回归(立flag)
自己重新抄了一遍代码,很开心,作为一个初级调包侠,看到这么详细又完整的模型代码,是真的激动。希望自己能够慢慢一步一步,自己也能写出这样的代码。 这里给自己挖一个坑,后续要来填坑,读懂模型,自己写。mark 文章不具参考意义(不过实测了代码可行),想了解的朋友请看参考博客。 import numpy as np import matplotlib.pyplot as plt import h5py from lr_utils import load_dataset train_set_x_orig , .原创 2020-05-27 20:57:30 · 310 阅读 · 0 评论