深度学习神经网络思维的Logistic回归(立flag)

  • 自己重新抄了一遍代码,很开心,作为一个初级调包侠,看到这么详细又完整的模型代码,是真的激动。希望自己能够慢慢一步一步,自己也能写出这样的代码。
  • 这里给自己挖一个坑,后续要来填坑,读懂模型,自己写。mark
  • 文章不具参考意义(不过实测了代码可行),想了解的朋友请看参考博客。
import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = load_dataset()
index = 25
plt.imshow(train_set_x_orig[index])
plt.show()

m_train = train_set_y.shape[1] #训练集里图片的数量。
m_test = test_set_y.shape[1] #测试集里图片的数量。
num_px = train_set_x_orig.shape[1] #训练、测试集里面的图片的宽度和高度(均为64x64)。

#现在看一看我们加载的东西的具体情况
print ("训练集的数量: m_train = " + str(m_train))
print ("测试集的数量 : m_test = " + str(m_test))
print ("每张图片的宽/高 : num_px = " + str(num_px))
print ("每张图片的大小 : (" + str(num_px) + ", " + str(num_px) + ", 3)")
print ("训练集_图片的维数 : " + str(train_set_x_orig.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集_图片的维数: " + str(test_set_x_orig.shape))
print ("测试集_标签的维数: " + str(test_set_y.shape))

#X_flatten = X.reshape(X.shape [0],-1).T #X.T是X的转置
#将训练集的维度降低并转置。
train_set_x_flatten  = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
#将测试集的维度降低并转置。
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

print ("训练集降维最后的维度: " + str(train_set_x_flatten.shape))
print ("训练集_标签的维数 : " + str(train_set_y.shape))
print ("测试集降维之后的维度: " + str(test_set_x_flatten.shape))
print ("测试集_标签的维数 : " + str(test_set_y.shape))

train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255

def sigmoid(z):
    '''
    :param z:  z  - 任何大小的标量或numpy数组。
    :return:    s  -  sigmoid(z)
    '''
    s = 1 / (1+np.exp(-z))
    return s

def initialize_with_zeros(dim):
    '''
    此函数为w创建一个维度为(dim,1)的0向量,并将b初始化为0。
    :param dim:
    :return:  w  - 维度为(dim,1)的初始化向量。
            b  - 初始化的标量(对应于偏差)
    '''
    w = np.zeros(shape=(dim,1))
    b = 0
    # 使用断言来确保我要的数据是正确的
    assert (w.shape == (dim,1))
    assert (isinstance(b,float) or isinstance(b,int))
    return (w,b)

def propagate(w,b,X,Y):
    '''
    现在要实现一个计算成本函数及其渐变的函数propagate(),实现前向和后向传播的成本函数及其梯度。

    :param w: 权重,大小不等的数组(num_px * num_px * 3,1)
    :param b: 偏差,一个标量
    :param X: 矩阵类型为(num_px * num_px * 3,训练数量)
    :param Y: 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据数量)

    :return:
        cost- 逻辑回归的负对数似然成本
        dw  - 相对于w的损失梯度,因此与w相同的形状
        db  - 相对于b的损失梯度,因此与b的形状相同
    '''

    m = X.shape[1]
    # 正向传播
    A = sigmoid(np.dot(w.T,X)+b)
    cost = (-1/m) * np.sum(Y*np.log(A) + (1-Y)*(np.log(1-A)))

    # 反向传播
    dw = (1/m) * np.dot(X,(A-Y).T)
    db = (1/m) * np.sum(A-Y)

    assert (dw.shape == w.shape)
    assert (db.dtype == float)
    cost = np.squeeze(cost) # 删除单维度的维度
    assert (cost.shape ==())

    # 创建一个字典,把dw和db保存起来
    grads = {
        "dw" : dw,
        "db" : db
    }
    return (grads,cost)

def optimize(w,b,X,Y,num_iterations,learning_rate,print_cost = False):
    '''
    此函数通过运行梯度下降算法来优化w和b
    :param w:  权重,大小不等的数组(num_px * num_px * 3,1)
    :param b: 偏差,一个标量
    :param X: 维度为(num_px * num_px * 3,训练数据的数量)的数组。
    :param Y: 真正的“标签”矢量(如果非猫则为0,如果是猫则为1),矩阵维度为(1,训练数据的数量)
    :param num_iterations: 优化循环的迭代次数
    :param learning_rate: 梯度下降更新规则的学习率
    :param print_cost: 每100步打印一次损失值
    :return:
        params  - 包含权重w和偏差b的字典
        grads  - 包含权重和偏差相对于成本函数的梯度的字典
        成本 - 优化期间计算的所有成本列表,将用于绘制学习曲线。

    提示:
    我们需要写下两个步骤并遍历它们:
        1)计算当前参数的成本和梯度,使用propagate()。
        2)使用w和b的梯度下降法则更新参数。
    '''
    costs = []
    for i in range(num_iterations):
        grads, cost = propagate(w,b,X,Y)

        dw = grads["dw"]
        db = grads["db"]

        w = w - learning_rate * dw
        b = b - learning_rate * db

        #记录成本
        if i % 100 == 0:
            costs.append(cost)
        # 打印成本数据
        if (print_cost) and (i % 100 == 0):
            print("迭代的次数: %i , 误差值: %f" % (i,cost))

    params = {
        "w" : w,
        "b" : b
    }
    grads = {
        "dw" : dw,
        "db" : db
    }
    return (params,grads,costs)

def prediction(w,b,X):
    '''
    使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
    :param w: 权重,大小不等的数组(num_px * num_px * 3,1)
    :param b: 偏差,一个标量
    :param X: 维度为(num_px * num_px * 3,训练数据的数量)的数据
    :return:
        Y_prediction  - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
    '''
    m = X.shape[1] # 图片的数量
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0],1)

    # 预测猫在图片中出现的概率
    A = sigmoid(np.dot(w.T,X)+b)
    for i in range(A.shape[1]):
        # 将概率a [0,i]转换为实际预测p [0,i]
        Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0
    assert (Y_prediction.shape == (1,m))
    return Y_prediction

def model(X_train,Y_train,X_test,Y_test,num_iterations = 2000,learning_rate = 0.5,print_cost = False):
    '''
    通过调用之前实现的函数来构建逻辑回归模型
    :param X_train: numpy的数组,维度为(num_px * num_px * 3,m_train)的训练集
    :param Y_train: numpy的数组,维度为(1,m_train)(矢量)的训练标签集
    :param X_test: numpy的数组,维度为(num_px * num_px * 3,m_test)的测试集
    :param Y_test: numpy的数组,维度为(1,m_test)的(向量)的测试标签集
    :param num_iterations: 表示用于优化参数的迭代次数的超参数
    :param learning_rate: 表示optimize()更新规则中使用的学习速率的超参数
    :param print_cost: 设置为true以每100次迭代打印成本
    :return:
        d  - 包含有关模型信息的字典。
    '''

    w,b = initialize_with_zeros(X_train.shape[0])
    parameters,grads,costs = optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
    # 从字典“参数”中检索参数w和b
    w,b = parameters["w"],parameters["b"]
    # 预测测试/训练集的例子
    Y_prediction_test = prediction(w,b,X_test)
    Y_prediction_train = prediction(w,b,X_train)

    # 打印训练后的准确性
    print("训练集准确性:", format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100), "%")
    print("测试集准确性:", format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100), "%")

    d = {
        "costs" : costs,
        "Y_prediction_test" : Y_prediction_test,
        "Y_prediction_train" : Y_prediction_train,
        "w": w,
        "b": b,
        "learning_rate": learning_rate,
        "num_iterations": num_iterations
    }
    return d

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

#绘制图
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title('Learning rate'+ str(d["learning_rate"]))
plt.show()




print ('\n' + "-------------------------------------------------------" + '\n')
##测试学习率
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
    print ("learning rate is: " + str(i))
    models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
    print ('\n' + "-------------------------------------------------------" + '\n')

for i in learning_rates:
    plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))

plt.ylabel('cost')
plt.xlabel('iterations')

legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()

请添加图片描述

请添加图片描述
参考博客
https://blog.csdn.net/u013733326/article/details/79639509

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值