队列

一.概念

只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出的特点。进行插入操作的一端称为队尾,进行删除操作的一端称为队头

二.队列的使用

Queue是个接口,底层是通过链表实现的

public class Main {
    public static void main(String[] args) {
        Queue<Integer> q = new LinkedList<>();
        q.offer(1);
        q.offer(2);
        q.offer(3); //从队尾入队列
        System.out.println(q.size()); //获取队列中有效元素个数
        System.out.println(q.peek()); //从队头出队列,并将删除的元素返回

        System.out.println(q.poll());//从队头出队列,并将删除的元素返回
        if (q.isEmpty()){
            System.out.println("队列空");
        }else {
            System.out.println(q.size());
        }
    }
}

三.队列模拟实现

四.循环队列

1.如何让下标回到0

2.如何区分空与满

1.通过size属性记录

2.保留一个位置

3.使用标记

3.设计循环队列

class MyCircularQueue {
    public int[] elem;
    public int front; //队头下标
    public int rear; //队尾下标

    public MyCircularQueue(int k) {
        elem = new int[k+1]; 因为要浪费一个空间判断是否满,所以数组实际大小要k+1
        rear = front = 0;
    }

    public boolean enQueue(int value) {
        if(!isFull()){
            elem[rear] = value;
            rear = (rear+1)%elem.length;
            return true;
        }
        return false;
    }

    public boolean deQueue() {
        if(!isEmpty()){
            front = (front+1)%elem.length;
            return true;
        }
        return false;
    }

    public int Front() {
        if(isEmpty()){
            return -1;
        }
        return elem[front];
    }

    public int Rear() {
        if(isEmpty()){
            return -1;
        }
        return elem[(rear - 1 + elem.length) % elem.length];
    }

    public boolean isEmpty() {
        return front == rear;
    }

    public boolean isFull() {
        return (rear+1)%elem.length == front;
    }
}

五.双端队列(Deque)

双端队列是指允许两端都可以进行入队和出队操作的队列。

Deque是一个接口,使用时必须创建LinkedList的对象。

Deque接口使用较多,栈和队列均可以使用该接口

Deque<Integer> stack = new ArrayDeque<>();//双端队列的线性实现
Deque<Integer> queue = new LinkedList<>();//双端队列的链式实现

六.题目

1.用队列实现栈

class MyStack {
    Queue<Integer> q1 ;
    Queue<Integer> q2 ;

    public MyStack() {
        q1 = new LinkedList<>();
        q2 = new LinkedList<>();
    }
    
    public void push(int x) {
         if (!q2.isEmpty()){
            q2.offer(x);
        }else {
            q1.offer(x);
        }
    }
    
    public int pop() {
        if (empty()){
            return -1;  
        }else if (q1.isEmpty()){
            int size = q2.size();
            for (int i = 0; i< size-1; i++){
                q1.offer(q2.poll());
            }
             return q2.poll();
        }else{
            int size = q1.size(); 
            for (int i = 0; i< size-1; i++){
                q2.offer(q1.poll());
            }
            return q1.poll();
        }
    }
    
    
    public int top() {
        int tmp = 0;
        if (empty()){
            return -1;
        }else if (q1.isEmpty()){
            int size = q2.size();
            for (int i = 0; i< size; i++){
                tmp = q2.poll();
                q1.offer(tmp);
            }
            return tmp;
        }else{
            int size = q1.size();
            for (int i = 0; i< size; i++){
                tmp = q1.poll();
                q2.offer(tmp);
            }
            return tmp;
        }
    }
    
    public boolean empty() {
        return q1.isEmpty() && q2.isEmpty();
    }
}

2.用栈实现队列

class MyQueue {
    Stack<Integer>q1;
    Stack<Integer>q2;
    public MyQueue() {
        q1 = new Stack<>();
        q2 = new Stack<>();

    }

    public void push(int x) {
        q1.push(x);
    }

    public int pop() {
        if (!q2.empty()){
            return q2.pop();
        }else if (empty()){
            return -1;
        }else {
            int size = q1.size();
            for (int j = 0; j < size; j++) {
                q2.push(q1.pop());
            }
            return q2.pop();
        }
    }

    public int peek() {
        if (!q2.empty()){
            return q2.peek();
        }else if (empty()){
            return -1;
        }else {
            int size = q1.size();
            for (int j = 0; j < size; j++) {
                q2.push(q1.pop());
            }
            return q2.peek();
        }
    }

    public boolean empty() {
        return q1.empty() && q2.empty();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值