导数与微分
与导数概念的形成有密切关系的两个历史问题: { 直线运动的速度 切线问题 导数概念:极限存在 = > 可导,极限就是导数 导函数:某一区间内所有点都可导,其导数值构成的新的函数 单侧导数:可导的充要条件是左导数和右导数都存在且相等 函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件 以下给出连续但不可导的几个函数: { f ( x ) = ∣ x ∣ 在 x = 0 处不可导的原因是曲线不光滑 g ( x ) = x 1 3 在 x = 0 处不可导的原因是切线垂直与 x 轴,导数为无穷或没有导数 h ( x ) = { x s i n 1 x , x ≠ 0 0 , x = 0 在 x = 0 处不可导的原因是割线始终在 y = − x 和 y = x 之间振荡,因为 − x < x s i n 1 x < x 关于导数的重要结论: { 奇函数的导函数是偶函数 偶函数的导函数是奇函数 周期函数的导函数仍是周期函数,且周期相同 与导数概念的形成有密切关系的两个历史问题:\begin{cases} 直线运动的速度 \\ 切线问题 \\ \end{cases} \\ 导数概念:极限存在=>可导,极限就是导数 \\ \,\\ 导函数:某一区间内所有点都可导,其导数值构成的新的函数 \\ \,\\ 单侧导数:可导的充要条件是左导数和右导数都存在且相等 \\ \,\\ 函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件 \\ 以下给出连续但不可导的几个函数:\\ \begin{cases} f(x)=|x|在x=0处不可导的原因是曲线不光滑 \\ g(x)=x^\frac{1}{3}在x=0处不可导的原因是切线垂直与x轴,导数为无穷或没有导数 \\ h(x)=\begin{cases} xsin\frac{1}{x},x \ne 0 \\ 0,x=0 \end{cases} 在x=0处不可导的原因是割线始终在y=-x和y=x之间振荡,因为-x<xsin\frac{1}{x}<x \\ \end{cases} \\ \,\\ 关于导数的重要结论:\begin{cases} 奇函数的导函数是偶函数 \\ 偶函数的导函数是奇函数 \\ 周期函数的导函数仍是周期函数,且周期相同 \end{cases} 与导数概念的形成有密切关系的两个历史问题:{直线运动的速度切线问题导数概念:极限存在=>可导,极限就是导数导函数:某一区间内所有点都可导,其导数值构成的新的函数单侧导数:可导的充要条件是左导数和右导数都存在且相等函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件以下给出连续但不可导的几个函数:⎩ ⎨ ⎧f(x)=∣x∣在x=0处不可导的原因是曲线不光滑g(x)=x31在x=0处不可导的原因是切线垂直与x轴,导数为无穷或没有导数h(x)={xsinx1,x=00,x=0在x=0处不可导的原因是割线始终在y=−x和y=x之间振荡,因为−x<xsinx1<x关于导数的重要结论:⎩ ⎨ ⎧奇函数的导函数是偶函数偶函数的导函数是奇函数周期函数的导函数仍是周期函数,且周期相同
函数的求导法则
( 1 )如果 u = u ( x ) 和 v = v ( x ) 都在点 x 有导数,则它们的和差积商也有导数 [ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) [ u ( x ) v ( x ) ] ′ = u ′ ( x ) v ( x ) + u ( x ) v ′ ( x ) v 2 ( x ) ( v ( x ) ≠ 0 ) ( 2 )反函数的导数等于直接函数导数的倒数 ( 3 )复合函数的导数为 f ′ ( u ) g ′ ( x ) ( 4 )反函数求导公式的推导 设 y = f ( x ) ,则 x = f − 1 ( y ) , f ′ ( x ) = lim Δ x → 0 Δ y Δ x 当 Δ x → 0 ,必有 Δ y → 0 (可导),则 f ′ ( x ) = lim Δ y → 0 1 Δ x Δ y = [ f − 1 ( y ) ] ′ ( 5 )反三角函数导数公式的推导 y = arcsin x , x = sin y ,则 y ′ = 1 ( sin y ) ′ = 1 cos y = 1 1 − x 2 ( 6 )隐函数求导 隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法, 不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来 隐函数求导法则:直接对方程两边求导 ( 7 )对数求导法 适用于幂指函数及某些用连乘、连除表示的函数 ( 8 )参数方程求导 由参数方程 { x = φ ( t ) y = ψ ( t ) 所确定的函数的导数 d y d x = ψ ′ ( t ) φ ′ ( t ) 二阶导数 d 2 y d x 2 = y ′ 对 t 的导数 φ ′ ( t ) ( 9 )分段函数求导 对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在 (1)如果u=u(x)和v=v(x)都在点x有导数,则它们的和差积商也有导数\\ [u(x) \pm v(x)]^{'}=u^{'}(x) \pm v^{'}(x) \\ [u(x)\,v(x)]^{'}=u^{'}(x) \, v(x)+u(x) \, v^{'}(x) \\ [\frac{u(x)}{v(x)}]^{'}=\frac{u^{'}(x) \, v(x)+u(x) \, v^{'}(x)}{v^2(x)} \; (v(x) \ne 0) \\ \,\\ (2)反函数的导数等于直接函数导数的倒数 \\ \,\\ (3)复合函数的导数为f^{'}(u)\,g^{'}(x) \\ \,\\ (4)反函数求导公式的推导 \\ 设y=f(x),则x=f^{-1}(y),f^{\prime}(x)=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} \\ 当\Delta x \to 0,必有\Delta y \to 0(可导),则f^{\prime}(x)=\lim_{\Delta y \to 0}\frac{1}{\frac{\Delta x}{\Delta y}}=[f^{-1}(y)]^{\prime} \\ \,\\ (5)反三角函数导数公式的推导 \\ y=\arcsin x,x=\sin y,则y^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^2}} \\ \,\\ (6)隐函数求导 \\ 隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法,\\ 不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来 \\ 隐函数求导法则:直接对方程两边求导 \\ \,\\ (7)对数求导法 \\ 适用于幂指函数及某些用连乘、连除表示的函数 \\ \,\\ (8)参数方程求导 \\ 由参数方程\begin{cases} x=\varphi(t) \\ y=\psi(t) \end{cases}所确定的函数的导数\frac{dy}{dx}=\frac{\psi ^{\prime}(t)}{\varphi ^{\prime}(t)} \\ 二阶导数\frac{d^2y}{dx^2}=\frac{y^{\prime}对t的导数}{\varphi ^{\prime}(t)} \\ \,\\ (9)分段函数求导 \\ 对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在 (1)如果u=u(x)和v=v(x)都在点x有导数,则它们的和差积商也有导数[u(x)±v(x)]′=u′(x)±v′(x)[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x)[v(x)u(x)]′=v2(x)u′(x)v(x)+u(x)v′(x)(v(x)=0)(2)反函数的导数等于直接函数导数的倒数(3)复合函数的导数为f′(u)g′(x)(4)反函数求导公式的推导设y=f(x),则x=f−1(y),f′(x)=Δx→0limΔxΔy当Δx→0,必有Δy→0(可导),则f′(x)=Δy→0limΔyΔx1=[f−1(y)]′(5)反三角函数导数公式的推导y=arcsinx,x=siny,则y′=(siny)′1=cosy1=1−x21(6)隐函数求导隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法,不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来隐函数求导法则:直接对方程两边求导(7)对数求导法适用于幂指函数及某些用连乘、连除表示的函数(8)参数方程求导由参数方程{x=φ(t)y=ψ(t)所确定的函数的导数dxdy=φ′(t)ψ′(t)二阶导数dx2d2y=φ′(t)y′对t的导数(9)分段函数求导对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在
高阶导数常用公式
( s i n x ) ( n ) = s i n ( x + n ⋅ π 2 ) ( c o s x ) ( n ) = c o s ( x + n ⋅ π 2 ) ( u ± v ) ( n ) = u ( n ) ± v ( n ) ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) ( 莱布尼茨公式 ) ( sin x ) ( n ) = sin ( x + n ⋅ π 2 ) ( cos x ) ( n ) = cos ( x + n ⋅ π 2 ) (sinx)^{(n)}=sin(x+n·\frac{\pi}{2}) \\ \,\\ (cosx)^{(n)}=cos(x+n·\frac{\pi}{2}) \\ (u \pm v)^{(n)}=u^{(n)} \pm v^{(n)} \\ (uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)}(莱布尼茨公式) \\ (\sin x)^{(n)}=\sin (x+n\cdot \frac{\pi}{2}) \\ \,\\ (\cos x)^{(n)}=\cos (x+n\cdot \frac{\pi}{2}) (sinx)(n)=sin(x+n⋅2π)(cosx)(n)=cos(x+n⋅2π)(u±v)(n)=u(n)±v(n)(uv)(n)=k=0∑nCnku(n−k)v(k)(莱布尼茨公式)(sinx)(n)=sin(x+n⋅2π)(cosx)(n)=cos(x+n⋅2π)
微分
定义:若 f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + o ( Δ x ) ,即 Δ y = d y + o ( Δ x ) 则称 f ( x ) 在 x 0 点可微, A Δ x 称为 f ( x ) 在 x 0 点的微分,记为 d y = A Δ x d y 是 Δ y 的线性主部, Δ y − d y 是 Δ x 的高阶无穷小 如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论: 如果函数在某一点可微,那么在该点一定可导,并且 A = 该点的导数,微分 d y = f ′ ( x 0 ) × Δ x 函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算 但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的 微分的几何意义:将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀 一阶微分形式的不变性: 对于函数 y = f ( u ) ,不管 u 是自变量还是中间变量, y = f ( u ) 的微分形式总可以写为 d y = f ′ ( u ) d u 定义:若f(x_0+\Delta x)-f(x_0)=A\Delta x+o(\Delta x),即\Delta y=d_y+o(\Delta x) \\ 则称f(x)在x_0点可微,A\Delta x称为f(x)在x_0点的微分,记为d_y=A\Delta x \\ d_y是\Delta y的线性主部,\Delta y-d_y是\Delta x的高阶无穷小 \\ \,\\ 如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论:\\ 如果函数在某一点可微,那么在该点一定可导,并且A=该点的导数,微分d_y=f'(x_0)×\Delta x \\ \,\\ 函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算 \\ 但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的 \\ \,\\ 微分的几何意义: 将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀 \\ \,\\ 一阶微分形式的不变性:\\ 对于函数y=f(u),不管u是自变量还是中间变量,y=f(u)的微分形式总可以写为dy=f^{\prime}(u)du 定义:若f(x0+Δx)−f(x0)=AΔx+o(Δx),即Δy=dy+o(Δx)则称f(x)在x0点可微,AΔx称为f(x)在x0点的微分,记为dy=AΔxdy是Δy的线性主部,Δy−dy是Δx的高阶无穷小如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论:如果函数在某一点可微,那么在该点一定可导,并且A=该点的导数,微分dy=f′(x0)×Δx函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的微分的几何意义:将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀一阶微分形式的不变性:对于函数y=f(u),不管u是自变量还是中间变量,y=f(u)的微分形式总可以写为dy=f′(u)du