高等数学上册 第二章 导数与微分 知识点总结

导数与微分

与导数概念的形成有密切关系的两个历史问题: { 直线运动的速度 切线问题 导数概念:极限存在 = > 可导,极限就是导数   导函数:某一区间内所有点都可导,其导数值构成的新的函数   单侧导数:可导的充要条件是左导数和右导数都存在且相等   函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件 以下给出连续但不可导的几个函数: { f ( x ) = ∣ x ∣ 在 x = 0 处不可导的原因是曲线不光滑 g ( x ) = x 1 3 在 x = 0 处不可导的原因是切线垂直与 x 轴,导数为无穷或没有导数 h ( x ) = { x s i n 1 x , x ≠ 0 0 , x = 0 在 x = 0 处不可导的原因是割线始终在 y = − x 和 y = x 之间振荡,因为 − x < x s i n 1 x < x   关于导数的重要结论: { 奇函数的导函数是偶函数 偶函数的导函数是奇函数 周期函数的导函数仍是周期函数,且周期相同 与导数概念的形成有密切关系的两个历史问题:\begin{cases} 直线运动的速度 \\ 切线问题 \\ \end{cases} \\ 导数概念:极限存在=>可导,极限就是导数 \\ \,\\ 导函数:某一区间内所有点都可导,其导数值构成的新的函数 \\ \,\\ 单侧导数:可导的充要条件是左导数和右导数都存在且相等 \\ \,\\ 函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件 \\ 以下给出连续但不可导的几个函数:\\ \begin{cases} f(x)=|x|在x=0处不可导的原因是曲线不光滑 \\ g(x)=x^\frac{1}{3}在x=0处不可导的原因是切线垂直与x轴,导数为无穷或没有导数 \\ h(x)=\begin{cases} xsin\frac{1}{x},x \ne 0 \\ 0,x=0 \end{cases} 在x=0处不可导的原因是割线始终在y=-x和y=x之间振荡,因为-x<xsin\frac{1}{x}<x \\ \end{cases} \\ \,\\ 关于导数的重要结论:\begin{cases} 奇函数的导函数是偶函数 \\ 偶函数的导函数是奇函数 \\ 周期函数的导函数仍是周期函数,且周期相同 \end{cases} 与导数概念的形成有密切关系的两个历史问题:{直线运动的速度切线问题导数概念:极限存在=>可导,极限就是导数导函数:某一区间内所有点都可导,其导数值构成的新的函数单侧导数:可导的充要条件是左导数和右导数都存在且相等函数可导性与连续性关系:连续性是可导性的必要条件,不是充分条件以下给出连续但不可导的几个函数: f(x)=xx=0处不可导的原因是曲线不光滑g(x)=x31x=0处不可导的原因是切线垂直与x轴,导数为无穷或没有导数h(x)={xsinx1x=00x=0x=0处不可导的原因是割线始终在y=xy=x之间振荡,因为x<xsinx1<x关于导数的重要结论: 奇函数的导函数是偶函数偶函数的导函数是奇函数周期函数的导函数仍是周期函数,且周期相同

函数的求导法则

( 1 )如果 u = u ( x ) 和 v = v ( x ) 都在点 x 有导数,则它们的和差积商也有导数 [ u ( x ) ± v ( x ) ] ′ = u ′ ( x ) ± v ′ ( x ) [ u ( x )   v ( x ) ] ′ = u ′ ( x )   v ( x ) + u ( x )   v ′ ( x ) [ u ( x ) v ( x ) ] ′ = u ′ ( x )   v ( x ) + u ( x )   v ′ ( x ) v 2 ( x )    ( v ( x ) ≠ 0 )   ( 2 )反函数的导数等于直接函数导数的倒数   ( 3 )复合函数的导数为 f ′ ( u )   g ′ ( x )   ( 4 )反函数求导公式的推导 设 y = f ( x ) ,则 x = f − 1 ( y ) , f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x 当 Δ x → 0 ,必有 Δ y → 0 (可导),则 f ′ ( x ) = lim ⁡ Δ y → 0 1 Δ x Δ y = [ f − 1 ( y ) ] ′   ( 5 )反三角函数导数公式的推导 y = arcsin ⁡ x , x = sin ⁡ y ,则 y ′ = 1 ( sin ⁡ y ) ′ = 1 cos ⁡ y = 1 1 − x 2   ( 6 )隐函数求导 隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法, 不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来 隐函数求导法则:直接对方程两边求导   ( 7 )对数求导法 适用于幂指函数及某些用连乘、连除表示的函数   ( 8 )参数方程求导 由参数方程 { x = φ ( t ) y = ψ ( t ) 所确定的函数的导数 d y d x = ψ ′ ( t ) φ ′ ( t ) 二阶导数 d 2 y d x 2 = y ′ 对 t 的导数 φ ′ ( t )   ( 9 )分段函数求导 对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在 (1)如果u=u(x)和v=v(x)都在点x有导数,则它们的和差积商也有导数\\ [u(x) \pm v(x)]^{'}=u^{'}(x) \pm v^{'}(x) \\ [u(x)\,v(x)]^{'}=u^{'}(x) \, v(x)+u(x) \, v^{'}(x) \\ [\frac{u(x)}{v(x)}]^{'}=\frac{u^{'}(x) \, v(x)+u(x) \, v^{'}(x)}{v^2(x)} \; (v(x) \ne 0) \\ \,\\ (2)反函数的导数等于直接函数导数的倒数 \\ \,\\ (3)复合函数的导数为f^{'}(u)\,g^{'}(x) \\ \,\\ (4)反函数求导公式的推导 \\ 设y=f(x),则x=f^{-1}(y),f^{\prime}(x)=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x} \\ 当\Delta x \to 0,必有\Delta y \to 0(可导),则f^{\prime}(x)=\lim_{\Delta y \to 0}\frac{1}{\frac{\Delta x}{\Delta y}}=[f^{-1}(y)]^{\prime} \\ \,\\ (5)反三角函数导数公式的推导 \\ y=\arcsin x,x=\sin y,则y^{\prime}=\frac{1}{(\sin y)^{\prime}}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-x^2}} \\ \,\\ (6)隐函数求导 \\ 隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法,\\ 不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来 \\ 隐函数求导法则:直接对方程两边求导 \\ \,\\ (7)对数求导法 \\ 适用于幂指函数及某些用连乘、连除表示的函数 \\ \,\\ (8)参数方程求导 \\ 由参数方程\begin{cases} x=\varphi(t) \\ y=\psi(t) \end{cases}所确定的函数的导数\frac{dy}{dx}=\frac{\psi ^{\prime}(t)}{\varphi ^{\prime}(t)} \\ 二阶导数\frac{d^2y}{dx^2}=\frac{y^{\prime}对t的导数}{\varphi ^{\prime}(t)} \\ \,\\ (9)分段函数求导 \\ 对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在 1)如果u=u(x)v=v(x)都在点x有导数,则它们的和差积商也有导数[u(x)±v(x)]=u(x)±v(x)[u(x)v(x)]=u(x)v(x)+u(x)v(x)[v(x)u(x)]=v2(x)u(x)v(x)+u(x)v(x)(v(x)=0)2)反函数的导数等于直接函数导数的倒数3)复合函数的导数为f(u)g(x)4)反函数求导公式的推导y=f(x),则x=f1(y)f(x)=Δx0limΔxΔyΔx0,必有Δy0(可导),则f(x)=Δy0limΔyΔx1=[f1(y)]5)反三角函数导数公式的推导y=arcsinxx=siny,则y=(siny)1=cosy1=1x2 16)隐函数求导隐函数的显化有时是困难的甚至不可能的,因此我们希望有一种方法,不管隐函数能够显化,都能直接由方程算出它所确定的隐函数的导数来隐函数求导法则:直接对方程两边求导7)对数求导法适用于幂指函数及某些用连乘、连除表示的函数8)参数方程求导由参数方程{x=φ(t)y=ψ(t)所确定的函数的导数dxdy=φ(t)ψ(t)二阶导数dx2d2y=φ(t)yt的导数9)分段函数求导对分段函数求导,先求出每段的导函数,然后再确定分界点的左右导数是否存在

高阶导数常用公式

( s i n x ) ( n ) = s i n ( x + n ⋅ π 2 )   ( c o s x ) ( n ) = c o s ( x + n ⋅ π 2 ) ( u ± v ) ( n ) = u ( n ) ± v ( n ) ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) ( 莱布尼茨公式 ) ( sin ⁡ x ) ( n ) = sin ⁡ ( x + n ⋅ π 2 )   ( cos ⁡ x ) ( n ) = cos ⁡ ( x + n ⋅ π 2 ) (sinx)^{(n)}=sin(x+n·\frac{\pi}{2}) \\ \,\\ (cosx)^{(n)}=cos(x+n·\frac{\pi}{2}) \\ (u \pm v)^{(n)}=u^{(n)} \pm v^{(n)} \\ (uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)}(莱布尼茨公式) \\ (\sin x)^{(n)}=\sin (x+n\cdot \frac{\pi}{2}) \\ \,\\ (\cos x)^{(n)}=\cos (x+n\cdot \frac{\pi}{2}) (sinx)(n)=sin(x+n2π)(cosx)(n)=cos(x+n2π)(u±v)(n)=u(n)±v(n)(uv)(n)=k=0nCnku(nk)v(k)(莱布尼茨公式)(sinx)(n)=sin(x+n2π)(cosx)(n)=cos(x+n2π)

微分

定义:若 f ( x 0 + Δ x ) − f ( x 0 ) = A Δ x + o ( Δ x ) ,即 Δ y = d y + o ( Δ x ) 则称 f ( x ) 在 x 0 点可微, A Δ x 称为 f ( x ) 在 x 0 点的微分,记为 d y = A Δ x d y 是 Δ y 的线性主部, Δ y − d y 是 Δ x 的高阶无穷小   如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论: 如果函数在某一点可微,那么在该点一定可导,并且 A = 该点的导数,微分 d y = f ′ ( x 0 ) × Δ x   函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算 但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的   微分的几何意义:将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀   一阶微分形式的不变性: 对于函数 y = f ( u ) ,不管 u 是自变量还是中间变量, y = f ( u ) 的微分形式总可以写为 d y = f ′ ( u ) d u 定义:若f(x_0+\Delta x)-f(x_0)=A\Delta x+o(\Delta x),即\Delta y=d_y+o(\Delta x) \\ 则称f(x)在x_0点可微,A\Delta x称为f(x)在x_0点的微分,记为d_y=A\Delta x \\ d_y是\Delta y的线性主部,\Delta y-d_y是\Delta x的高阶无穷小 \\ \,\\ 如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论:\\ 如果函数在某一点可微,那么在该点一定可导,并且A=该点的导数,微分d_y=f'(x_0)×\Delta x \\ \,\\ 函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算 \\ 但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的 \\ \,\\ 微分的几何意义: 将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀 \\ \,\\ 一阶微分形式的不变性:\\ 对于函数y=f(u),不管u是自变量还是中间变量,y=f(u)的微分形式总可以写为dy=f^{\prime}(u)du 定义:若f(x0+Δx)f(x0)=AΔx+o(Δx),即Δy=dy+o(Δx)则称f(x)x0点可微,AΔx称为f(x)x0点的微分,记为dy=AΔxdyΔy的线性主部,ΔydyΔx的高阶无穷小如果根据定义,来判断函数是否可微,就比较麻烦,因此有如下结论:如果函数在某一点可微,那么在该点一定可导,并且A=该点的导数,微分dy=f(x0)×Δx函数可微的充分必要条件是可导,因此微分的判断与计算归结成了导数的判断与计算但导数与微分不同,导数是变化率,微分是改变量,是线性主部,线性的意义在于其变化是均匀的微分的几何意义:将切线改变量代替曲线改变量,将直线代替曲线,将均匀代替非均匀一阶微分形式的不变性:对于函数y=f(u),不管u是自变量还是中间变量,y=f(u)的微分形式总可以写为dy=f(u)du

内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

波波老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值