轨道交通二号线

本文介绍了上海轨道交通二号线(中山公园——张江高科)各站点首末班车时间,还详细列出了各站点可到达的地点及对应的始发和途经公交线路,如中山公园站、静安寺站、人民广场站等,为出行提供便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

轨道交通二号线(中山公园——张江高科)

中山公园(首班车:6:00,末班车:23:00)
张江高科(首班车:6:32,末班车:22:23,龙阳路首班车:5:27)



【中山公园站】
到定西路、凯旋北路、长宁路、汇川路、禺园路 在此下车

始发线路: 13(长寿路、海宁路、提篮桥)、20(南京路、九江路外滩)、73(中山西路、龙华)、96(西藏南路)、121(协和路)、921(南京路、外滩、提篮桥)、922(长寿路、海宁路、提篮桥)、939(四川路商业街、鲁迅公园)、中卫线(航华新村、卫家角、久事西郊花园、徐泾、联名路)、946(上海体育场、徐家汇、古美二村)

途径线路:54、67、88、825、737、941、947、949、765、轨道3号线


【江苏路站】
到 市三女中、愚园路 在此下车

途经车:01、20、44、62、138、148、562、825、921、923、939路


【静安寺站】
到 南京西路、延安西路、静安公园、华山路、万航渡路、城市航站楼 在此下车

始发站
*[美丽园]:37路(南京路、齐齐哈尔路)、62路(江苏路、曹杨路、桃浦、绿杨桥)、838路(桃浦)
*[铜仁路]:57路(延安路、上海动物园、龙柏新村)

途经车:15、20、21、40、45、71、76、93、94、113、506、138、939、824、825、830、921、927路、机场六线


【石门一路站】
到 南京西路商业街、梅陇镇广场、中信泰富广场、中创电脑城、吴江路休闲街 在此下车

途经车:20、23、112、24、37、41、49、104、128、148、955、921、927、935、939路


【人民广场站】
到 上海博物馆、上海城市规划展示馆、上海大剧院、香港名店街(地下)、南京路商业街、南京路步行街、福州路文化街、广东路、九江路、延安路景观区域、大世界游乐中心、延安中路、武胜路公交枢纽站、上海市政府、迪美购物中心(地下) 在此下车。

始发线路 :
*[武胜路、威海路]:112路(江宁路、岚皋路、管弄新村、新村路、万里城)、112区间车(江宁路、岚皋路、管弄新村、大华新村)
46路(岭南路)、123路(运光新村)、145路(敦化路)、503路(岳阳医院)、952路(宝山镇)、952B线(高架-宝山镇)、916路(呼兰路)、925路(上海动物园、虹桥机场)、925B线(沪青平公路、航华新村)、隧道六线(浦东金杨新村)、201路(水产路)、203路(长江路)
*[福州路]:980路(复兴路隧道、浦南上南路、杨南新村)、
*[南京西路九江路]:451路(复兴路隧道、周浦)
 
途经线路:18路、23路、49路、109路、537路、935路、隧道三线、71路、71B线、127路、936路、轨道1号线



【河南中路站】
到 南京路步行街、伊都锦商厦、友谊欧洲商城、置地广场 在此下车

途经车:14、17、20、37、49、64、66、220、801、864、921、929路


【陆家嘴站】
到 东方明珠、金茂大厦、滨江大道、中心绿地、国际会议中心、外滩观光隧道、正大广场 在此下车

始发站:82路(周家渡)、85路(长岛路)、581B线(莲溪)、795路(三林城)、陆周专线(周浦)、870路(中原)、985路(南浦大桥、徐家汇、上海体育场)、973路(凌兆)、961路(孙桥)、774路(高行)、沪华线(华高小区)、972路(芳甸路)、983(上海国际博览中心)、583路(凌兆新村)、申高专线(高桥)

途经车:984路、81路、789路、旅游3号线、机场五线、971路(高桥)、陆川专线(川沙)、蔡陆线(三甲港)


【东昌路站】
到 新上海商业城、第一八百伴、时代广场、东方医院 在此下车

途经车:01、82、85、86、119、130、522、570、574、581、583、584、977、961、625、630、771、773、774、779、783、787、789、976、791、792、795、818、985、938、980、981、983路、隧道三线、隧道四线、972路、沪合线(合庆)、沪南线(南汇)、沪祝线(祝桥)


【东方路站】
始发站:777路(金桥)、790路(川沙)

途经车:119、130、219、451、522、583、584、984、968、978、610、977、970、961、973、625、626、630、639、736、746、771、772、773、774、775、779、783、785、791、819、871、935、936、980、983路、隧道三线、隧道五线、隧道八线、隧道九线、972路、泰高线(外高桥保税区)、杨高线(高东)、机场六线(复兴东路、曹杨路、上海西站)


【上海科技馆站】
到 世纪广场、浦东新区行政中心、上海科技城、浦东图书馆、世纪公园1号门、张家浜游船码头、上海东方艺术中心 在此站下车

始发站:987路(华高小区)、隧道四线(延安路隧道、连云路)

途经车:640、788、794、983路、东周线(东沟)


【世纪公园站】
始发站:967路(南码头)、大桥二线(老西门)、世团专线(大团)、世东专线(东海农场)。

途径线:983路、640路


【龙阳路站】
到 麦德龙浦东店、万邦城市花园、新上海国际博览中心 在此下车

始发站:磁浮列车线(浦东机场)、龙滨线(滨海)、976路(上浦路)、龙大线(大团)、龙芦专线(芦潮港)、龙平芦专线(芦潮港)、龙泥果线(芦潮港)

途经车:大桥六线(香楠小区)、桥六区间(张江地铁站)、申江线(施湾)、东川线(川沙)、方川专线(机场镇)、乳合专线(合庆)、机场三线(中山西路、延安西路)、983路、机场七线(浦东机场),以及到南汇、芦潮港的郊区线


【张江高科站】
始发站:张川线(川沙)、张南线(南汇)、大桥五线(杨浦大桥、邯郸路复旦大学)、大桥六线(南浦大桥、交大徐汇校区)、申江线、塘川线、塘川专线


### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值