一种基于Bayes概率统计的风控条件概率分析

本文探讨了风控中规则和模型的优缺点,重点介绍了如何利用Bayes算法增强风险防控的主动性。通过条件概率公式,计算用户可能是案件的概率,提供了一种在实际生产环境中操作样本数据的方法。
摘要由CSDN通过智能技术生成

看过很多国内国外的风控模型,目前用得最多的是规则,相对好点的用到了模型。首先我们来分析一下规则和模型他们存在的优点和缺点。

一、规则:

1、规则是由一组条件组成,条件之间的关系是and,条件内部之前还可有子条件,子条件之间可以是or的关系;当然,规则也可以由一组复杂的条件表达式来组成,如:c1 and c2 and (c4 or c5)  and c6。

2、规则是一种基于断言式的逻辑判断,我们判断一条规则是否满足通常有二种方式:

      a.规则中的条件是否全部满足;

      b.规则中的某几个条件是否满足(这种方式应用的业务场景很少);

优点:能精确定位某一类案件,只要满足该规则,就认为是该操作用户有风险,误抓率低。

缺点:规则的灵活性有限,它的防控针对性非常强,需要规则人员不断的新设规则、修改规则,不断的进行补防,比如规则RULE1,规则人员设置时可能只针对异地登陆、且修改密码的用户,但其实该类案件特征为异地登陆、修改密码且修改邮箱,RULE1显然可能只会抓到一部分案件,还会漏过一部分案件。这种事情的发生从业务的角度上看可能由于案件分析人员和规则设置人员不是同一个导致沟通不到位、可能案件分析不到位、可能规则设置有漏洞。


二、模型:

模型是一种在各种场合被广泛推荐的一种监控方式,符合码农们目前在广泛控索的大数据时代。目前广泛用的模型算法逻辑回归、C5、决策树等,不是今天要讲的重点,因此这里不细说。

优点:

1、案件的覆盖广。

2、可以使用很多变量进行线下训练和线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值