LaTeX 中的\genfrac
命令
在 LaTeX 中,\genfrac
是一个常用的、可以创建自定义分式的强大命令。本文介绍如何使用\genfrac
,包括如何自定义分式的分隔符(delimiter)、线的粗细,以及特殊的样式。
语法
\genfrac
接受六个参数:
- 左分隔符(置空则为无分隔符)
- 右分隔符(置空则为无分隔符)
- 分式中线的粗细(为
0pt
则不显示) - 公式的展示样式,分为四个层级(
\displaystyle
、\textstyle
、\scriptstyle
、\scriptscriptstyle
) - 分子
- 分母
例子
分隔符的选择:
\genfrac {}{}{1pt}{0}{E=mc^2}{2},
\genfrac \{ \} {1pt}{0}{E=mc^2}{2},
\genfrac ( ) {1pt}{0}{E=mc^2}{2},
\genfrac [ ] {1pt}{0}{E=mc^2}{2},
\genfrac [ \} {1pt}{0}{E=mc^2}{2}
E
=
m
c
2
2
,
{
E
=
m
c
2
2
}
,
(
E
=
m
c
2
2
)
,
[
E
=
m
c
2
2
]
,
[
E
=
m
c
2
2
}
\genfrac {}{}{1pt}{0}{E=mc^2}{2}, \genfrac \{ \} {1pt}{0}{E=mc^2}{2}, \genfrac ( ) {1pt}{0}{E=mc^2}{2}, \genfrac [ ] {1pt}{0}{E=mc^2}{2}, \genfrac [ \} {1pt}{0}{E=mc^2}{2}
2E=mc2,{2E=mc2},(2E=mc2),[2E=mc2],[2E=mc2}
第三个参数中线粗细的区别:
\genfrac \{ \} {1pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {2pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {3pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {4mm}{0}{1}{\sigma\sqrt{2\pi}}
{
1
σ
2
π
}
,
{
1
σ
2
π
}
,
{
1
σ
2
π
}
,
{
1
σ
2
π
}
\genfrac \{ \} {1pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {2pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {3pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {4mm}{0}{1}{\sigma\sqrt{2\pi}}
{σ2π1},{σ2π1},{σ2π1},{σ2π1}
第四个参数(展示样式)的区别:
\genfrac [ ) {2pt}{0}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{1}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{2}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{3}{\text{Xovee}}{X\mu}
[ Xovee X μ ) , [ Xovee X μ ) , [ Xovee X μ ) , [ Xovee X μ ) \genfrac [ ) {2pt}{0}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{1}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{2}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{3}{\text{Xovee}}{X\mu} [XμXovee),[XμXovee),[XμXovee),[XμXovee)