LaTeX \genfrac 分式命令

本文详细介绍了 LaTeX 中的 genfrac 命令,用于创建自定义分式。内容包括如何设置分隔符、调整线的粗细以及选择不同的展示样式,并通过实例展示了各种参数组合的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LaTeX 中的\genfrac命令

在 LaTeX 中,\genfrac是一个常用的、可以创建自定义分式的强大命令。本文介绍如何使用\genfrac,包括如何自定义分式的分隔符(delimiter)、线的粗细,以及特殊的样式。

语法

\genfrac接受六个参数:

  1. 左分隔符(置空则为无分隔符)
  2. 右分隔符(置空则为无分隔符)
  3. 分式中线的粗细(为0pt则不显示)
  4. 公式的展示样式,分为四个层级(\displaystyle\textstyle\scriptstyle\scriptscriptstyle
  5. 分子
  6. 分母

例子

分隔符的选择

\genfrac {}{}{1pt}{0}{E=mc^2}{2},
\genfrac \{ \} {1pt}{0}{E=mc^2}{2},
\genfrac ( ) {1pt}{0}{E=mc^2}{2},
\genfrac [ ] {1pt}{0}{E=mc^2}{2},
\genfrac [ \} {1pt}{0}{E=mc^2}{2}

E = m c 2 2 , { E = m c 2 2 } , ( E = m c 2 2 ) , [ E = m c 2 2 ] , [ E = m c 2 2 } \genfrac {}{}{1pt}{0}{E=mc^2}{2}, \genfrac \{ \} {1pt}{0}{E=mc^2}{2}, \genfrac ( ) {1pt}{0}{E=mc^2}{2}, \genfrac [ ] {1pt}{0}{E=mc^2}{2}, \genfrac [ \} {1pt}{0}{E=mc^2}{2} 2E=mc2,{2E=mc2},(2E=mc2),[2E=mc2],[2E=mc2}
第三个参数中线粗细的区别:

\genfrac \{ \} {1pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {2pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {3pt}{0}{1}{\sigma\sqrt{2\pi}},
\genfrac \{ \} {4mm}{0}{1}{\sigma\sqrt{2\pi}}

{ 1 σ 2 π } , { 1 σ 2 π } , { 1 σ 2 π } , { 1 σ 2 π } \genfrac \{ \} {1pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {2pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {3pt}{0}{1}{\sigma\sqrt{2\pi}}, \genfrac \{ \} {4mm}{0}{1}{\sigma\sqrt{2\pi}} {σ2π 1},{σ2π 1},{σ2π 1},{σ2π 1}
第四个参数(展示样式)的区别

\genfrac [ ) {2pt}{0}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{1}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{2}{\text{Xovee}}{X\mu},
\genfrac [ ) {2pt}{3}{\text{Xovee}}{X\mu}

[ Xovee X μ ) , [ Xovee X μ ) , [ Xovee X μ ) , [ Xovee X μ ) \genfrac [ ) {2pt}{0}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{1}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{2}{\text{Xovee}}{X\mu}, \genfrac [ ) {2pt}{3}{\text{Xovee}}{X\mu} [XμXovee),[XμXovee),[XμXovee),[XμXovee)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xovee

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值