2020-09-22

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

Device configuration

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

Hyper-parameters

num_epochs = 80
batch_size = 100
learning_rate = 0.001

Image preprocessing modules

transform = transforms.Compose([
transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])

CIFAR-10 dataset

train_dataset = torchvision.datasets.CIFAR10(root=’…/…/data/’,
train=True,
transform=transform,
download=True)

test_dataset = torchvision.datasets.CIFAR10(root=’…/…/data/’,
train=False,
transform=transforms.ToTensor())

Data loader

train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)

3x3 convolution

def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)

Residual block

class ResidualBlock(nn.Module):
def init(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).init()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample

def forward(self, x):
    residual = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample:
        residual = self.downsample(x)
    out += residual
    out = self.relu(out)
    return out

ResNet

class ResNet(nn.Module):
def init(self, block, layers, num_classes=10):
super(ResNet, self).init()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 16, layers[0])
self.layer2 = self.make_layer(block, 32, layers[1], 2)
self.layer3 = self.make_layer(block, 64, layers[2], 2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(64, num_classes)

def make_layer(self, block, out_channels, blocks, stride=1):
    downsample = None
    if (stride != 1) or (self.in_channels != out_channels):
        downsample = nn.Sequential(
            conv3x3(self.in_channels, out_channels, stride=stride),
            nn.BatchNorm2d(out_channels))
    layers = []
    layers.append(block(self.in_channels, out_channels, stride, downsample))
    self.in_channels = out_channels
    for i in range(1, blocks):
        layers.append(block(out_channels, out_channels))
    return nn.Sequential(*layers)

def forward(self, x):
    out = self.conv(x)
    out = self.bn(out)
    out = self.relu(out)
    out = self.layer1(out)
    out = self.layer2(out)
    out = self.layer3(out)
    out = self.avg_pool(out)
    out = out.view(out.size(0), -1)
    out = self.fc(out)
    return out

model = ResNet(ResidualBlock, [2, 2, 2]).to(device)

Loss and optimizer

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

For updating learning rate

def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group[‘lr’] = lr

Train the model

total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)

    # Forward pass
    outputs = model(images)
    loss = criterion(outputs, labels)
    
    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if (i+1) % 100 == 0:
        print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
               .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# Decay learning rate
if (epoch+1) % 20 == 0:
    curr_lr /= 3
    update_lr(optimizer, curr_lr)

Test the model

model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

Save the model checkpoint

torch.save(model.state_dict(), ‘resnet.ckpt’

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页