数组(六)-- LC[1851] 包含每个查询的最小区间

文章介绍了如何通过区间端点排序、离线查询和数据结构(如优先队列或并查集)来高效解决给定二维整数数组中满足特定条件的最小区间问题。通过实例和两种解法展示了如何优化查找过程以降低时间复杂度。
摘要由CSDN通过智能技术生成

1 包含每个查询的最小区间

1.1 题目描述

给你一个二维整数数组 intervals ,其中 i n t e r v a l s [ i ] = [ l e f t i , r i g h t i ] intervals[i] = [left_i, right_i] intervals[i]=[lefti,righti] 表示第 i i i 个区间开始于 l e f t i left_i lefti 、结束于 r i g h t i right_i righti(包含两侧取值,闭区间)。区间的 长度 定义为区间中包含的整数数目,更正式地表达是 r i g h t i − l e f t i + 1 right_i - left_i + 1 rightilefti+1

再给你一个整数数组 queries 。第 j 个查询的答案是满足 l e f t i < = q u e r i e s [ j ] < = r i g h t i left_i <= queries[j] <= right_i lefti<=queries[j]<=righti 的 长度最小区间 i 的长度 。如果不存在这样的区间,那么答案是 -1 。

以数组形式返回对应查询的所有答案。

示例 1:
输入:intervals = [[1,4],[2,4],[3,6],[4,4]], queries = [2,3,4,5]
输出:[3,3,1,4]
解释:查询处理如下:

  • Query = 2 :区间 [2,4] 是包含 2 的最小区间,答案为 4 - 2 + 1 = 3 。
  • Query = 3 :区间 [2,4] 是包含 3 的最小区间,答案为 4 - 2 + 1 = 3 。
  • Query = 4 :区间 [4,4] 是包含 4 的最小区间,答案为 4 - 4 + 1 = 1 。
  • Query = 5 :区间 [3,6] 是包含 5 的最小区间,答案为 6 - 3 + 1 = 4 。

示例 2
输入:intervals = [[2,3],[2,5],[1,8],[20,25]], queries = [2,19,5,22]
输出:[2,-1,4,6]
解释:查询处理如下:

  • Query = 2 :区间 [2,3] 是包含 2 的最小区间,答案为 3 - 2 + 1 = 2 。
  • Query = 19:不存在包含 19 的区间,答案为 -1 。
  • Query = 5 :区间 [2,5] 是包含 5 的最小区间,答案为 5 - 2 + 1 = 4 。
  • Query = 22:区间 [20,25] 是包含 22 的最小区间,答案为 25 - 20 + 1 = 6 。

解法一:区间端点排序+离线查询+优先队列(小根堆)

首先我们对问题进行分析,对于第 j j j 个查询,可以遍历 intervals \textit{intervals} intervals,找到满足 left i ≤ queries j ≤ right i \textit{left}_i \le \textit{queries}_j \le \textit{right}_i leftiqueriesjrighti 的长度最小区间 i i i 的长度。以上思路对于每个查询,都需要重新遍历 intervals \textit{intervals} intervals

如果查询是递增的,那么我们可以对 intervals \textit{intervals} intervals 按左端点 left \textit{left} left 从小到大进行排序,使用一个指针 i i i 记录下一个要访问的区间 intervals [ i ] \textit{intervals}[i] intervals[i],初始时 i = 0 i = 0 i=0,使用优先队列 pq \textit{pq} pq 保存区间(优先队列的比较 key \textit{key} key 为区间的长度,队首元素为长度最小的区间)。对于第 j j j 个查询,我们执行以下步骤:

  1. 如果 i i i 等于 intervals \textit{intervals} intervals 的长度或 left i > queries [ j ] \textit{left}_i \gt \textit{queries}[j] lefti>queries[j],终止步骤;
  2. intervals [ i ] \textit{intervals}[i] intervals[i] 添加到优先队列 pq \textit{pq} pq,将 i i i 的值加 1,继续执行步骤 1。

此时所有符合 left ≤ queries j ≤ right \textit{left} \le \textit{queries}_j \le \textit{right} leftqueriesjright 的区间都在 pq \textit{pq} pq,我们不断地获取优先队列 pq \textit{pq} pq 的队首区间:

  • 如果队首区间的右端点 right < queries [ j ] \textit{right} \lt \textit{queries}[j] right<queries[j],那么说明该区间不满足条件,从 pq \textit{pq} pq 中出队;

如果队首区间的右端点 right ≥ queries [ j ] \textit{right} \ge \textit{queries}[j] rightqueries[j],那么该区间为第 j j j 个查询的最小区间,终止过程。

对于第 j + 1 j+1 j+1 个查询,因为查询是递增的,所以有 queries [ j + 1 ] ≥ queries [ j ] \textit{queries}[j + 1] \ge \textit{queries}[j] queries[j+1]queries[j],那么此时 pq \textit{pq} pq 中的区间都满足 left ≤ queries [ j + 1 ] \textit{left} \le \textit{queries}[j + 1] leftqueries[j+1]。在第 j j j 个查询中丢弃的区间有 right < queries [ j ] ≤ queries [ j + 1 ] \textit{right} \lt \textit{queries}[j] \le \textit{queries}[j + 1] right<queries[j]queries[j+1],因此丢弃的区间不满足第 j + 1 j + 1 j+1 个查询。同样在第 j + 1 j + 1 j+1 个查询执行与第 j j j 个查询类似的步骤,将可能满足条件的区间加入优先队列 pq \textit{pq} pq 中,那么此时所有满足条件的区间都在优先队列 pq \textit{pq} pq 中,执行类似第 j j j 个查询的出队操作。

由以上分析,如果查询满足递增的条件,那么可以利用优先队列进行优化。题目一次性提供所有的查询,基于离线原理,我们对所有查询从小到大进行排序,然后执行以上算法。

class Solution:
    def minInterval(self, intervals: List[List[int]], queries: List[int]) -> List[int]:
        n, m = len(intervals), len(queries)
        intervals.sort()
        queries = sorted((x, i) for i, x in enumerate(queries))
        ans = [-1] * m
        pq = []
        i = 0
        for x, j in queries:
            while i < n and intervals[i][0] <= x:
                a, b = intervals[i]
                heappush(pq, (b - a + 1, b))
                i += 1
            while pq and pq[0][1] < x:
                heappop(pq)
            if pq:
                ans[j] = pq[0][0]
        return ans

复杂度分析

  • 时间复杂度 O ( n × log ⁡ n + m × log ⁡ m ) O(n \times \log n + m \times \log m) O(n×logn+m×logm)
  • 空间复杂度 O ( n + m ) O(n + m) O(n+m)。其中 n 和 m 分别是数组 intervals 和 queries 的长度。

解法二:区间长度排序+离线询问+并查集

class Solution:
    def minInterval(self, intervals: List[List[int]], queries: List[int]) -> List[int]:
        m, n = len(intervals), len(queries)

        intervals.sort(key=lambda x: x[1] - x[0])
        queries = sorted([(q, i) for i, q in enumerate(queries)])

        fa = list(range(n + 1))

        def find(x):
            if x != fa[x]:
                fa[x] = find(fa[x])
            return fa[x]

        ans = [-1] * n

        for l, r in intervals:
            length = r - l + 1
            pos = bisect_left(queries, (l, -1))

            idx = find(pos)
            while idx < n and queries[idx][0] <= r:
                ans[queries[idx][1]] = length
                fa[idx] = idx + 1
                idx = find(idx + 1)

        return ans
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长路漫漫2021

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值