Lab色彩模型及在彩色图像分割中应用

一、Lab色彩模型简介

         Lab模式是根据Commission International Eclairage(CIE)在1931年所制定的一种测定颜色的国际标准建立的。于1976年被改进,并且命名的一种色彩模式。Lab颜色模型弥补了RGBCMYK两种色彩模式的不足。它是一种设备无关的颜色模型,也是一种基于生理特征的颜色模型。 Lab颜色模型由三个要素组成,一个要素是亮度(L),a 和b是两个颜色通道。a包括的颜色是从深绿色(低亮度值)到灰色(中亮度值)再到亮粉红色(高亮度值);b是从亮蓝色(低亮度值)到灰色(中亮度值)再到黄色(高亮度值)。因此,这种颜色混合后将产生具有明亮效果的色彩。

     下面给出一个杂草图像分割实例。首先读入一幅杂草RGB图像,通过MATLAB内置函数rgb2lab将其转换为Lab图像,然后提取a分量图像,通过对a分量图像二值化和数学形态学运算进行背景分割。

       RGB彩色图像如下图所示:

二、程序代码

clear all;
close all;
clc;
I=imread('d:\weed2.jpeg');
imshow(I);
I1=rgb2lab(I);
figure,imshow(I1);
IL=I1(:,:,1);
figure,imshow(IL);
Ia=I1(:,:,2);
figure,imhist(Ia);
Ib=I1(:,:,3);
figure,imshow(Ib);
figure,imhist(Ib);
max(Ia(:))
min(Ia(:))
imtool(Ia);
figure,imshow(Ia);
Ib=I1(:,:,3);
figure,imshow(Ib);
imtool(Ia);
bw1=roicolor(Ia,min(Ia(:)),2);
bw2=roicolor(Ia,min(Ia(:)),0);
bw2_areaopen=bwareaopen(bw2,400);
figure,imshow(bw2_areaopen);
%bw3=imbinarize(Ih,'adaptive');
%figure,imshow(bw3);
obj=uint8(bw2_areaopen).*I;
figure,imshow(obj);
figure,
subplot(2,3,1),imshow(I),title('原始RGB图像');
subplot(2,3,2),imshow(Ia),title('a分量图像');
subplot(2,3,3),imshow(Ib),title('b分量图像');
subplot(2,3,4),imshow(bw2),title('使用roicolor二值化');
subplot(2,3,5),imshow(bw2_areaopen),title('使用、数学形态运算去除小目标');
subplot(2,3,6),imshow(obj),title('分割的杂草彩色图像');

三、主要运行结果和分析

     

       从上面运行结果可以看出, 采用的合适色彩空间可以较好的实现彩色图像背景分割。

      如果大家觉得本文对大家学习和科研有所帮助,请点赞、收藏和关注,欢迎转发,谢谢大家!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值