一周没有更新博客了,这一周的时间内加强了对机器学习和图像处理的学习。学的有点混乱,有必要记录一下。
深度学习可以解决很多问题,但有时候深度学习和图像处理相结合才能有更好的效果:比如,在进行交通信号灯检测时,用目标检测模型确定信号灯位置后,对信号灯进行颜色分割再识别可大大提高准确率。
机器学习领域中有句话:数据和特征决定了模型的上限,而算法只不过是逼近这个上限而已,所以了解机器学习的常用算法,熟悉机器学习中的特征工程是很有必要的。
【OpenCV实战】基于HSV的颜色分割实现(含Python代码)
1、什么是HSV
我们知道RGB颜色模式,通过不同的配比可以形成不同的颜色。HSV也是一种颜色模式,其模型如图所示
通过图示我们也能够看到,他和RGB颜色模型相似,也是由三个属性决定颜色,H、S、V分别是色彩、深度、明暗,按着图中方向的变化,其对应的颜色也会改变,三者也同样是有取值范围的:
- H(色调):用角度度量,取值范围为0°~360°
- S(饱和度)&#