【win11环境编译安装deformable Detr的MultiScaleDeformableAttention模块】


1.Compiling CUDA operators

cd ./models/ops
sh ./make.sh
# unit test (should see all checking is True)
python test.py

Note: win11 or win10环境下编译cuda operator,经常遇到的:Microsoft Visual C++ 14.0 is required


2.安装Build Tools for Visual Studio

Note: (offline安装或二进制安装等)虽能解决大部分问题,但终究不能从根本上解决问题。

2.1 直接到微软的官方网站下载build tools下载合适的版本,需要注册账号;我直接下载的 Build Tools for Visual Studio 2022 LTSC
在这里插入图片描述
2.2 双击 vs_BuildTools.exe 安装,安装Visual Studio Community 2022 LTSC 17.4, 然后勾选使用c++的桌面开发,并点击右下角的 安装.

Note: 这里需要重点提的是, 尽量把使用C++的桌面开发选择上.后续在用CMake的时候会比较方便.

在这里插入图片描述

等待安装结束即可


3.安装合适的cuda

CUDA官方安装教程: Link
CUDA Toolkit的下载: Link
Note: 安装与Anaconda环境中pytorch使用的 cudatoolkit 对应版本的 CUDA; eg:cudatoolkit=11.6,则下载 cuda_11.6.0_511.23_windows.exe

在这里插入图片描述

3.1 安装配置
双击你下载的CUDA Toolkit, 你就会看到工具包的解压路径(推荐默认,毕竟是底层调用,默认安装能减少不必要的麻烦).

在这里插入图片描述

解压完毕之后, 就开始安装了, 接下来点击 同意并继续

在这里插入图片描述

接下来设置安装选项, 这里推荐点击 自定义 (特别是第一次安装):

在这里插入图片描述

将能选的都选上, 很多东西可能你一开始用不上(比如nsight系统), 但是当你做的越来越多, 涉及的越来越深的时候就可能会用到.

在这里插入图片描述

选择安装路径, 这里也推荐默认, 毕竟是底层的调用库

在这里插入图片描述

直到CUDA Toolkit 安装完毕.


4.编译

windows环境安装 git bash , 即可运行 Linux 命令。

在这里插入图片描述

Reference:
[1]: https://zhuanlan.zhihu.com/p/471661231
[2]: 最新CUDA环境配置(Win10 + CUDA 11.6 + VS2019)
[3]: pytorch 配置deformabledetr和referformer工程环境踩坑
[4]:Deformable-DETR/issues/10

### 如何在 Windows 上复现 Deformable DETR 模型 PyTorch 实现 要在 Windows 环境下成功复现 Deformable DETR 模型的 PyTorch 实现,需要完成以下几个方面的准备工作和技术实现: #### 1. 创建 Conda 虚拟环境安装依赖项 为了确保兼容性和稳定性,建议使用 Anaconda 或 Miniconda 来管理 Python 环境。以下是创建虚拟环境的具体命令: ```bash conda create -n deformable_detr python=3.9 pip ``` 激活该环境后,可以继续安装所需的库和工具包[^1]。 #### 2. 安装 CUDA 和 cuDNN 驱动程序 由于 Deformable DETR 的核心部分涉及自定义 CUDA 算子(如多头注意力机制中的可变形卷积),因此需要正确配置 NVIDIA GPU 及其驱动版本。推荐按照官方文档说明下载对应版本的 CUDA 工具链以及 cuDNN 库文件[^2]。 #### 3. 下载源码仓库并编译扩展模块 访问 GitHub 页面获取最新版 DAB-DETR/Dynamic Anchor Boxes (DAB)-based Deformable Transformer Reference Detection Network 的开源项目地址链接。克隆至本地磁盘路径之后进入目录执行如下脚本语句来构建必要的 C++/CUDA 扩展组件: ```bash git clone https://github.com/IDEA-Research/DAB-DETR.git cd DAB-DETR pip install -r requirements.txt python setup.py build develop ``` #### 4. 数据集准备与预处理流程 通常情况下 COCO 格式的标注数据会被广泛应用于目标检测任务当中。如果尚未准备好训练验证测试三套样本集合,则需前往官方网站下载压缩包解压放置指定位置;同时调整参数设置使得加载器能够识别到这些图片及其对应的标签信息。 #### 5. 运行实验脚本观察效果表现 最后一步便是启动主函数入口点开始迭代优化权重直至收敛或者达到预期指标为止。例如可以通过以下方式调用默认配置来进行单次前向传播计算演示: ```python from models import build_model import util.misc as utils args = parser.parse_args() model, criterion, postprocessors = build_model(args) utils.load_model_weights(model, args.resume) outputs = model(samples) loss_dict = criterion(outputs, targets) ``` 以上即为整个基于 Windows 平台部署运行 Deformable DETR 的大致步骤概述。 ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值