文本分类——特征选择概述

特征选择在文本分类中至关重要,可以降低问题规模并提高分类性能。常见的方法包括文档频率(DF)、卡方校验(CHI)、信息增益(IG)和互信息(MI)。DF通过设置阈值筛选词组;CHI衡量类别与词组的关联度;IG根据词组带来的信息量选择;MI则度量词组与类别的相关性。这些方法各有优缺点,适用于不同场景。
摘要由CSDN通过智能技术生成

特征选择概述

  在向量空间模型中,文本可以选择字、词组、短语、甚至“概念”等多种元素表示。这些元素用来表征文本的性质,区别文本的属性,因此这些元素可以被称为文本的特征。在文本数据集上一般含有数万甚至数十万个不同的词组,如此庞大的词组构成的向量规模惊人,计算机运算非常困难。进行特征选择,对文本分类具有重要的意义。特征选择就是要选择那些最能表征文本含义的词组元素。特征选择不仅可以降低问题的规模,还有助于分类性能的改善。选取不同的特征对文本分类系统的性能有不同程度的影响。已提出的文本分类特征选择方法比较多,常用的方法有:文档频率(Document Frequency,DF)、信息增益(Information Gain,IG)、 卡方( χ2)校验(CHI)和互信息(Mutual Information,MI)等方法。另外特征抽取也是一种特征降维技术,特征抽取通过将原始的特征进行变换运算,形成新的特征。

常见模型

文档频率(DF)

  某一词组出现在文档中的频率称为文档频率(DF)。计算形式如式所示:

  基于文档频率的特征选择一般过程:
  1) 设定文档频率DF的上界阈值u 和下界阈值l
  2) 统计训练数据集中词组 的文档频率 ;
  3) ∀ DF(tk)< ∂l:由于词组tk 在训练集中出现的频率过低,不具有代表性,因此从特征空间中去掉词组tk
  4) ∀ DF(tk)< ∂u :由于词组tk 在训练集中出现的频率过高,不具有区分度,因此从特征空间中去掉词组tk
  所以最终选取的作为特征的词组必须满足条件l≤ DF(tk)≤ ∂u : 。
  基于文档频率的特征选择方法,一方面可以降低特征向量的复杂度;另一方面还可能提高分类的准确率,因为按此种特征选择方法可以删除一部分噪声数据。虽然DF方法简便、易实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值