谱聚类算法原理及实现

谱聚类是一种数据聚类方法,通过相似度矩阵构建带权无向图,并利用拉普拉斯矩阵进行图分割。文章详细介绍了从相似度矩阵到拉普拉斯矩阵的构建,再到归一化和特征向量计算,最后通过k-means完成聚类的过程。提供了谱聚类的C代码实现链接。
摘要由CSDN通过智能技术生成
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法。

将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。

"带权无向图"这个词太学术了,我们换一种叫法,即:相似度矩阵。

假设我们有一个相似度矩阵,矩阵中存的是所有对象的两两相似度。

 

那么这个矩阵应该有如下性质:

  1. 矩阵为N * N,N为对象总数
  2. 矩阵对角线的值为0,自己和自己相似个毛啊
  3. 矩阵为对称矩阵,及相似度是无向的

我们将该矩阵记为:W。

 

谱聚类的任务就是根据这个相似度矩阵,将这一大堆对象,分成不同的小堆,小堆内部的对象彼此都很像,小堆之间则不像。

 

谱聚类本身也提供了好几种不同的分割(cut)方法,每种方法对应一种优化目标。

本文只介绍其中比较常见,也是比较实用,而且实现起来也比较经济的一种:Nomarlized cut.

 

说白了,就是你最应该掌握和使用的一种,好了,进入正题。

 

当你得到一个相似度矩阵W后,即可通过以下几个步骤,来得到对应的图分割方案:

1. 计算对角矩阵D[N*N]。,公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值