谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法。
将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。
"带权无向图"这个词太学术了,我们换一种叫法,即:相似度矩阵。
假设我们有一个相似度矩阵,矩阵中存的是所有对象的两两相似度。
那么这个矩阵应该有如下性质:
- 矩阵为N * N,N为对象总数
- 矩阵对角线的值为0,自己和自己相似个毛啊
- 矩阵为对称矩阵,及相似度是无向的
我们将该矩阵记为:W。
谱聚类的任务就是根据这个相似度矩阵,将这一大堆对象,分成不同的小堆,小堆内部的对象彼此都很像,小堆之间则不像。
谱聚类本身也提供了好几种不同的分割(cut)方法,每种方法对应一种优化目标。
本文只介绍其中比较常见,也是比较实用,而且实现起来也比较经济的一种:Nomarlized cut.
说白了,就是你最应该掌握和使用的一种,好了,进入正题。
当你得到一个相似度矩阵W后,即可通过以下几个步骤,来得到对应的图分割方案:
1. 计算对角矩阵D[N*N]。,公式如下: