基于指标选择的多目标搜索(IBEA)

基于指标选择的多目标搜索(IBEA)
摘要:这篇文章讨论了决策者的偏好信息通常是如何能整合到多目标搜索中的。主要的思想是:首先是用二元性能指标的形式定义最优目标,然后在选择过程中直接使用这个指标。鉴于此,我们提出了一个通用的,能与任何指标结合的基于指标的进化算法。与现存算法明显不同的是,IBEA能适应使用者的偏好并且不需要额外的多样性保留机制(例如曾被使用的适应度分享)。

一. 动机
在多目标条件下,优化过程的最终目标是找PS(帕累托最优解集)的较好逼近。但难点是,逼近PS没有一个标准的定义。每一个特殊定义代表取决于使用者的特殊参考信息。例如,一个可以作为统一化的目标作为被近似结果支配的目标空间的超体积最大化。在某种条件下这个定义是接近的,但在另一种情况下可能就不接近了,因为每个决策者和问题的优化过程的目标可能是不同的。
根据这一讨论,我们可以重新考虑过去十年来指导多目标进化算法(MOEAs)设计的准则。我们在此提出两点意见:

1. 大多数MOEAs的基础是假设两个目标是相互矛盾的:(i)为了最小化到PS的距离(ii)为了最大化接近PS的多样性。然而,近几年的研究证明这种猜想是有缺陷的,我们都知道对于两个单独的目标是没有正式定义的,一个是收敛一个是多样性都服从于帕累托支配关系的。另外,这个问题也与实际问题相关。
2. 著名的MOEAs算法,用基于个体的帕累托排序的形式实现前面的猜想,其中,个体是在目标空间中被额外的密度信息改善的。然而,不同的算法的优化目标会有一些没有被明确定义的不同。这意味着当前的方法在使用偏好信息方面设计的不够灵活,相反,它们直接执行的是偏好信息的个别类型。

对于第一方面,另一种选择是使用符合帕累托决策者偏好的形式化表达。这又引出了与第二方面直接相关的问题:如何根据任意的偏好信息设计MOEAs?

研究人员已经解决了将偏好信息整合到多目标搜索的问题。例如,Fonseca和Fleming[8]提出了一种扩展的支配关系,该关系集成了预定义的优先级和目标;然而,上面提到的两个观察结果也适用于他们所引入的算法,类似于在此上下文中使用的许多其他算法:实现了一种隐含编码不明确的偏好信息的多样性保存机制。相比之下,Knowles[11]提出了一种多目标研究者,可以结合任意一元性能指标,不需要小生境方法。然而,这种方法——取决于使用的性能度量——计算上很昂贵,而且不清楚如何将其扩展到基于种群的多目标优化器,从而实现交配和环境选择。

这篇文章扩展了偏好信息灵活集成的思想,提出了一个通用的基于指标的演化算法,IBEA。主要思想是:根据支配关系的连续泛化形式化偏好,从而产生一个简单的算法概念。因此,与[8]相比,IBEA逼近允许适应任意的偏好信息和优化场景,而且不需要任何多样性保护技术。与[11]相比,IBEA更一般,因为种群大小可以是任意的而且更快,因为他只比较成对的个体而不是整个近似集。结果表明,该方法能够显著提高帕累托集逼近的质量。

二. 绪言
下面我们考虑一个一般的优化问题。假设决策者的偏好是以一个二元质量指标的形式给出。通常一个质量指标是一个函数用来映射K个PS到真实值的,最常见的是一元质量指标,即k=1。二元质量指标能被用来比较两个相互关联的帕累托近似集的质量。例如,二元加法E指标IE+给出了使得另一个近似集被支配的帕累托集近似需要或者在目标空间的每一维中能被平移的最小距离。定义如下:(图1解释)
在这里插入图片描述
在这里插入图片描述
在这里我们考虑二元质量指标的原因是他们代表了帕累托支配关系的自然延伸,因此能直接被使用在与一般基于帕累托适应度分配策略相似的适应度计算。然而,一个要求是需要考虑的指标I符合帕累托支配,定义如下:
定义1:一个二元质量指标I被定义为支配保留。
在这里插入图片描述
稍后我们将看到这些属性如何确保提出的适应度分配策略也符合帕累托支配。注意到IE+指标是支配保留的:例如,当x1支配x2时,指标值就变为负值。
在这里插入图片描述
现在,任意给出一个优化问题和相应的二元质量指标I,我们可以将优化过程的目标定义为最小化的I(A,S),S是帕累托集。如果I是支配保留的,对A=S,I(A,S)是最小的。注意到这里我们不需要S是已知的,它只是服务于优化目标的形式。

三. 基于指标的选择
适应度分配
种群P代表一个简单的决策空间适应度分配试图根据他们对优化目标的有用程度来将种群中的个体排序。有很多种方法来利用给出的P和I的信息,一个可能是简单的加上每个个体相对于其他个体的指标值。最大化的适应度值是x1从种群中移除后质量丢失的度量。也可以除以种群大小N,等等。然而,下面我们将采用一个略微不同的方案来放大支配个体对被支配个体的影响。

我们在这里使用了一个支配保留的性质。如果x1支配x2那么,x1到x2需要移动的最小距离就小于x2到x1需要移动的最小距离。因此,小的指标值对整体适应度的贡献比大的指标值要大。参数K是取决于I和相关问题的缩放因子,K>0.下面的定理显示适应度策略符合帕累托支配关系。
定理1:如果二元质量指标I是支配保留的,x1支配x2,F(x1)>F(x2)

例子指标
我们已经看到I如何能被用作给种群成员分配适应度值。然而,其他的支配保留指标也能替换,例如基于超体积概念的IHD指标:
在这里插入图片描述
这里,IH(A)代表目标空间中被A支配的超体积,IHD(A,B)是用来度量对于提前定义的参考点Z被B支配而不被A支配的超体积的大小。然而,当近似解包含几个决策向量时,计算IHD(A,B)的代价是很大的。解释如图1右边。

基础算法
在前面适应度分配方案的基础上,我们提出了一个更一般基于演化算法的指标,执行二元锦标赛交配选择和通过任意移除种群中的最差个体,然后剩下的个体的适应度值。
在这里插入图片描述
*算法1:基于指标的演化算法
输入:种群大小a;最大迭代次数N;适应度缩放因子
输出:A

  1. 初始化a,g=0;
  2. 适应度分配
  3. 环境选择:
  4. For size(P,1) > a
  5. 选择适应度值最小的个体x*
  6. 移除x*
  7. 更新剩余个体的适应度值
  8. End
  9. 停止条件被满足时停止
  10. 交配选择:用二进制锦标赛替换P中的个体,直到临时交配池被填满
  11. 变异:对临时交配池执行重组和突变算子,并将产生的新解添加到P中。返回适应度分配,进行下一次迭代。*

仿真结果:
基于指标的算法比NSGA-II和SPEA2好。下面的问题是如何改善算法:(i)相同的k值能被不同的问题和指标使用(ii)B-IBEA(HD)对IHD的参考点选择不那么敏感。

四. 提高鲁棒性(健壮性)
自适应的IBEA
为了应对IHD参考指标确定合适的参考点的问题,我们提出了一种不仅对指标值而且对目标值也进行的自适应缩放,缩放后所有的目标值都在0~1之间。像这样,我们选择对种群中每个目标最差的值作为计算IHD的参考点,对所有的目标参考点被设置成1.如果我们使用这种策略,那么种群中在角落的点就不能被添加到超体积中。为了解决这个问题,对所有的目标,我们设置2为参考点。
在这里插入图片描述
*算法2:自适应IBEA
不同:

  1. 适应度分配:
  2. 确定目标函数的上下界
  3. 将目标函数值缩放至0~1之间
  4. 使用新的目标函数值计算指标值,确定最大的指标值
  5. 计算每个个体的适应度函数
  6. 环境选择:
  7. 。。。
  8. 。。。
  9. 更新剩余个体的适应度值*

五. 结论
每个MOEA的执行都不可避免第假设决策者的偏好,而这些偏好在算法中很难被编码。而且每个用户和应用的偏好是不同的。因此,我们反对了MOEAs的观念—根据使用者特殊偏好的设计和评价,形式化性能度量;提出了一个一般的基于指标的演化算法(IBEA),与现存的基于种群的MOEAs不同,允许根据任意的性能度量来适应搜索。对于两个不同的性能度量,这种方法表现更好。

最后,博主的每篇翻译都是根据自己的理解意译的,可能与原文并不完全相符,而且博主作为初学者理解尚不深刻,所以可能存在一些不足之处,若有疑问可与博主进行讨论。博主翻译的文章是已公开发表的英文文献,仅供学习使用,如有侵权请联系博主删除。下面是原文链接,感兴趣的小伙伴可以下载来看。
链接: https://pan.baidu.com/s/1EBSDJR_oBQyfbLaiaerQqQ 提取码: fujb 复制这段内容后打开百度网盘手机App,操作更方便哦

  • 1
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值