《动手学深度学习》tensorflow2.0版 第三章笔记

本文详细介绍了如何使用Tensorflow2.0进行线性回归训练,包括训练误差和泛化误差的概念。还探讨了Tensorflow2.0的函数接口,如GradientTape、reduce_sum()、tf.cast()等,并展示了如何实现线性回归的训练。此外,文章提及了Fashion-MNIST数据集和Keras接口的应用,以及欠拟合和过拟合的概念。
摘要由CSDN通过智能技术生成

花了大半天的时间🥱,学习了下第三章深度学习基础,作为一名tensorflow新手,用最基本的函数去完成一些任务是必要的,否则上来就用更高级接口总会有种外强中干的感觉。即使现在pytorch如日中天,还是认为目前一段时间工业界对tensorflow的需求还是会有很多,但是鄙人特别擅长反向押宝🐯。文中的代码没有实测运行。

本文来自 https://trickygo.github.io/Dive-into-DL-TensorFlow2.0/#/chapter03_DL-basics/3.1_linear-regression

线性回归训练

只利用Tensor和GradientTape来实现一个线性回归的训练

%matplotlib inline
import tensorflow as tf
print(tf.__version__)
from matplotlib import pyplot as plt
import random

    2.0.0
	
#########

num_inputs = 2
num_examples = 1000
# 训练数据集样本数为1000,输入个数(特征数)为2
true_w = [2, -3.4]
true_b = 4.2
#真实权重和偏差 
features = tf.random.normal((num_examples, num_inputs),stddev = 1)
#随机生成的批量样本
labels = true_w[0] * features[:,0] + true_w[1] * features[:,1] + true_b
labels += tf.random.normal(labels.shape,stddev=0.01)
#噪声项服从均值为0、标准差为0.01的正态分布
print(features[0], labels[0])

输出:

(<tf.Tensor: id=31, shape=(2,), dtype=float32, numpy=array([0.24220389, 0.41220406], dtype=float32)>,
 <tf.Tensor: id=35, shape=(), dtype=float32, numpy=3.3064191>)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def set_figsize(figsize=(3.5, 2.5)):
    plt.rcParams['figure.figsize'] = figsize

set_figsize()
plt.scatter(features[:, 1], labels, 1)

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size): 
	# i 在[0,num_examples)范围内,以batch_size递增
        j = indices[i: min(i+batch_size, num_examples)]
		#j在每个batch_size范围内变化,min()此处防止超出最大索引
        yield tf.gather(features, axis=0, indices=j), tf.gather(labels, axis=0, indices=j)
		# yield 看做return之后再把它看做一个是生成器(generator)的一部分(带yield的函数才是真正的迭代器)
		# tf.gather()

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break

输出:

tf.Tensor(
[[ 0.04718596 -1.5959413 ]
 [ 0.3889716  -1.5288432 ]
 [-1.8489572   1.66422   ]
 [-1.3978077  -0.85818154]
 [-0.36940867 -0.619267  ]
 [-0.15660426  1.1231796 ]
 [ 0.89411694  1.5499148 ]
 [ 1.9971682  -0.56981105]
 [-2.1852891   0.18805206]
 [ 1.3222371  -1.0301086 ]], shape=(10, 2), dtype=float32) tf.Tensor(
[ 9.738684   10.164594   -5.15065     4.3305573   5.568048    0.06494669
  0.7251317  10.128626   -0.8036391  10.343082  ], shape=(10,), dtype=float32)

初始化模型参数

w = tf.Variable(tf.random.normal((num_inputs, 1), stddev=0.01))
b = tf.Variable(tf.zeros((1,)))

定义模型

def linreg(X, w, b):
    return tf.matmul(X, w) + b

定义损失函数

def squared_loss(y_hat, y):
    return (y_hat - tf.reshape(y, y_hat.shape)) ** 2 /2

定义优化算法(小批量随机梯度下降算法)
它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size, grads):
    """Mini-batch stochastic gradient descent."""
    for i, param in enumerate(params):
        param.assign_sub(lr * grads[i] / batch_size)
		# tf.assign_sub(ref, value),变量 ref 减去 value值,即 ref = ref - value

训练模型

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数t.gradients计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失 l l l的形状为(10, 1)。回忆一下自动求梯度一节。由于变量 l l l 并不是一个标量,所以我们可以调用reduce_sum()将其求和得到一个标量,再运行t.gradients得到该变量有关模型参数的梯度。注意在每次更新完参数后不要忘了将参数的梯度清零。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        with tf.GradientTape() as t:
            t.watch([w,b])
            l = tf.reduce_sum(loss(net(X, w, b), y))
        grads = t.gradient(l, [w, b])
        sgd([w, b], lr, batch_size, grads)
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, tf.reduce_mean(train_l)))

输出: epoch 1, loss 0.028907 epoch 2, loss 0.000101 epoch 3, loss 0.000049


使用tensorflow2.0推荐的keras接口更方便地实现线性回归的训练。

features是训练数据特征,labels是标签

生成数据集

import tensorflow as tf

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = tf.random.normal(shape=(num_examples, num_inputs), stddev=1)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += tf.random.normal(labels.shape, stddev=0.01)

读取数据

from tensorflow import data as tfdata

batch_size = 10
# 将训练数据的特征和标签组合
dataset = tfdata.Dataset.from_tensor_slices((features, labels))
# 随机读取小批量
dataset = dataset.shuffle(buffer_size=num_examples) 
dataset = dataset.batch(batch_size)
data_iter = iter(dataset)

shuffle 的 buffer_size 参数应大于等于样本数,batch 可以指定 batch_size 的分割大小。

for X, y in data_iter:
    print(X, y)
    break
tf.Tensor(
[[ 1.2856768   1.3815335 ]
 [ 1.1151928  -1.3777982 ]
 [ 0.6097271   1.3478378 ]
 [ 2.1615875   1.52963   ]
 [-1.3143488  -0.79531455]
 [-2.495006    0.3701927 ]
 [-0.07739297 -0.8636043 ]
 [-0.18479416 -1.5275241 ]
 [-0.3426277  -0.01935842]
 [ 0.25231913  1.4940815 ]], shape=(10, 2), dtype=float32) tf.Tensor(
[ 2.0673854  11.10116     0.8320709   3.3300133   4.272185   -2.062947
  6.981174    9.027803    3.5848885  -0.39152586], shape=(10,),     dtype=float32)

使用iter(dataset)的方式,只能遍历数据集一次,是一种比较 tricky 的写法,为了复刻原书表达才这样写。这里也给出一种在官方文档中推荐的写法:

for (batch, (X, y)) in enumerate(dataset):
    print(X, y)
    break

定义模型和初始化参数

Tensorflow 2.0推荐使用Keras定义网络,故使用Keras定义网络 我们先定义一个模型变量model,它是一个Sequential实例。

在构造模型时,我们在该容器中依次添加层。 当给定输入数据时,容器中的每一层将依次推断下一层的输入尺寸。 重要的一点是,在Keras中我们无须指定每一层输入的形状。 线性回归,输入层与输出层等效为一层全连接层keras.layers.Dense()

Keras 中初始化参数由 kernel_initializerbias_initializer 选项分别设置权重和偏置的初始化方式。
我们从 tensorflow 导入 initializers 模块,指定权重参数每个元素将在初始化时随机采样于均值为0、标准差为0.01的正态分布。偏差参数默认会初始化为零。RandomNormal(stddev=0.01)指定权重参数每个元素将在初始化时随机采样于均值为0、标准差为0.01的正态分布。偏差参数默认会初始化为零。

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow import initializers as init

model = keras.Sequential()
model.add(layers.Dense(1, kernel_initializer=init.RandomNormal(stddev=0.01)))

定义损失函数

Tensoflow在losses模块中提供了各种损失函数和自定义损失函数的基类,并直接使用它的均方误差损失作为模型的损失函数。

from tensorflow import losses
loss = losses.MeanSquaredError()

定义优化算法

我们也无须自己实现小批量随机梯度下降算法。tensorflow.keras.optimizers 模块提供了很多常用的优化算法比如SGD、Adam和RMSProp等

from tensorflow.keras import optimizers
trainer = optimizers.SGD(learning_rate=0.03)

训练模型

在使用Tensorflow训练模型时,我们通过调用tensorflow.GradientTape记录动态图梯度,执行tape.gradient获得动态图中各变量梯度。
通过 model.trainable_variables 找到需要更新的变量,并用 trainer.apply_gradients 更新权重,完成一步训练。

num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for (batch, (X, y)) in enumerate(dataset):
        with tf.GradientTape() as tape:
            l = loss(model(X, training=True), y)

        grads = tape.gradient(l, model.trainable_variables)
        trainer.apply_gradients(zip(grads, model.trainable_variables))

    l = loss(model(features), labels)
    print('epoch %d, loss: %f' % (epoch, l))
epoch 1, loss: 0.519287
epoch 2, loss: 0.008997
epoch 3, loss: 0.000261
true_w, model.get_weights()[0]

([2, -3.4], array([[ 1.9930198],
    [-3.3977082]], dtype=float32))
	
true_b, model.get_weights()[1]
(4.2, array([4.1895046], dtype=float32))
  • tensorflow.data模块提供了有关数据处理的工具,
  • tensorflow.keras.layers模块定义了大量神经网络的层,
  • tensorflow.initializers模块定义了各种初始化方法,
  • tensorflow.optimizers模块提供了模型的各种优化算法。
图像分类数据集(Fashion-MNIST)

图像分类数据集(Fashion-MNIST)

获取数据集

import tensorflow as tf
from tensorflow import keras
import numpy as np
import time
import sys
import matplotlib.pyplot as plt
from tensorflow.keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
len(x_train),len(x_test)

(60000, 10000)
feature,label=x_train[0],y_train[0]
#通过方括号[]来访问任意一个样本,下面获取第一个样本的图像和标签。
feature.shape, feature.dtype

((28, 28), dtype('uint8'))

Fashion-MNIST中一共包括了10个类别,以下函数可以将数值标签转成相应的文本标签。

def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 
	'coat', 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

定义一个可以在一行里画出多张图像和对应标签的函数。

def show_fashion_mnist(images, labels):
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.reshape((28, 28)))
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()

训练数据集中前9个样本的图像内容和文本标签:

X, y = [], []
for i in range(10):
    X.append(x_train[i])
    y.append(y_train[i])
show_fashion_mnist(X, get_fashion_mnist_labels(y))

读取小批量

batch_size = 256
if sys.platform.startswith('win'):
    num_workers = 0  # 0表示不用额外的进程来加速读取数据
else:
    num_workers = 4
train_iter = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size)

查看读取一遍训练数据需要的时间。

start = time.time()
for X, y in train_iter:
    continue
print('%.2f sec' % (time.time() - start))

0.22 sec

softmax回归的从零开始实现

import tensorflow as tf
import numpy as np
print(tf.__version__)

获取和读取数据

我们将使用Fashion-MNIST数据集,并设置批量大小为256。

from tensorflow.keras.datasets import fashion_mnist

batch_size=256
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train = tf.cast(x_train, tf.float32) / 255 #在进行矩阵相乘时需要float型,故强制类型转换为float型
x_test = tf.cast(x_test,tf.float32) / 255 #在进行矩阵相乘时需要float型,故强制类型转换为float型
train_iter = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(batch_size)
test_iter = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(batch_size)

初始化模型参数

模型的输入向量的长度是 28×28=784:该向量的每个元素对应图像中每个像素。由于图像有10个类别,单层神经网络输出层的输出个数为10,因此softmax回归的权重和偏差参数分别为784×10和1×10。Variable来标注需要记录梯度的向量。

num_inputs = 784
num_outputs = 10
W = tf.Variable(tf.random.normal(shape=(num_inputs, num_outputs), mean=0, stddev=0.01, dtype=tf.float32))
b = tf.Variable(tf.zeros(num_outputs, dtype=tf.float32))

实现 softmax 运算

def softmax(logits, axis=-1):
    return tf.exp(logits)/tf.reduce_sum(tf.exp(logits), axis, keepdims=True)
X = tf.random.normal(shape=(2, 5))
X_prob = softmax(X)
X_prob, tf.reduce_sum(X_prob, axis=1)


(<tf.Tensor: id=462414, shape=(2, 5), dtype=float32, numpy=
 array([[0.07188913, 0.19016613, 0.21624805, 0.40005335, 0.12164329],
        [0.20424965, 0.22559293, 0.13348413, 0.2243966 , 0.21227665]],
       dtype=float32)>,
 <tf.Tensor: id=462416, shape=(2,), dtype=float32, numpy=array([1.        , 0.99999994], dtype=float32)>)

定义模型
reshpe函数将每张原始图像改成长度为num_inputs的向量。

def net(X):
    logits = tf.matmul(tf.reshape(X, shape=(-1, W.shape[0])), W) + b
    return softmax(logits)
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = np.array([0, 2], dtype='int32')
tf.boolean_mask(y_hat, tf.one_hot(y, depth=3))
#变量y_hat是2个样本在3个类别的预测概率,变量y是这2个样本的标签类别

<tf.Tensor: id=462449, shape=(2,), dtype=float64, numpy=array([0.1, 0.5])>

定义损失函数
交叉熵损失函数
H ( y ( i ) , y ^ ( i ) ) = − ∑ j = 1 q y j ( i ) log ⁡ y ^ j (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值