贝叶斯统计推断笔记

一、贝叶斯点估计

  1. 条件方法
    后验分布 π ( θ ∣ x ) \pi(\theta|x) π(θx)是在样本 x x x给定下 θ \theta θ的条件分布,基于后验分布的统计推断就意味着只考虑已出现的数据(样本观测值),而认为未出现的数据与推断无关,这一重要的观点被称为“条件观点”,基于这种观点提出的统计推断方法被称为条件方法。它与“频率方法”之间具有很大的差别。例如在对估计量的无偏性的认识上,经典统计学认为参数 θ \theta θ的无偏估计 θ ^ ( X ) \hat{\theta}(\boldsymbol{X}) θ^(X)应满足:
    E [ θ ^ ( X ) ] = ∫ X θ ^ ( x ) p ( x ∣ θ ) d x = θ E[\hat{\theta}(\boldsymbol{X})]=\int_{\mathcal{X}} \hat{\theta}(\boldsymbol{x}) p(\boldsymbol{x}|\theta)d\boldsymbol{x} =\theta E[θ^(X)]=Xθ^(x)p(xθ)dx=θ
    其中平均是对样本空间中所有可能出现的样本而求,可实际中样本空间中绝大多数样本尚未出现过,甚至重复数百次也不会出现的样本也要在评价估计量 θ ^ \hat{\theta} θ^的好坏中占一席之地,何况在实际中不少估计量只使用一次或几次,而多数从未出现的样本也要参与平均是使实际工作者难以理解的,这就是条件观点。因此在贝叶斯统计推断中不使用无偏性,而条件方法是容易被实际工作者理解和接受的.

  2. 贝叶斯点估计
    定义1.1
    用后验密度 π ( θ ∣ x ) \pi(\theta|x) π(θx)达到最大值时 θ \theta θ之值作为估计量,称为 θ \theta θ后验众数估计(posterior mode estimator)或广义最大似然估计,记为 θ ^ M D \hat{\theta}_{MD} θ^MD.
    用后验分布的中位数作为 θ \theta θ的估计量,称为后验中位数估计(posterior median estimator),记为 θ ^ M E \hat{\theta}_{ME} θ^ME
    用后验分布的期望值作为 θ \theta θ的估计量,称为后验期望估计(posterior expectation estimator),记为 θ ^ E \hat{\theta}_{E} θ^E.

    注: 一般场合下这三种估计是不同的,但当后验密度为单峰对称时, θ \theta θ的三种贝叶斯估计重合。使用时可根据需要选择其中的一种。一般来说,当先验分布为共轭先验时,上述三种估计比较容易求得。

  3. 贝叶斯点估计的精度——估计的误差
    θ \theta θ的后验分布为 π ( θ ∣ x ) \pi(\theta|x) π(θx) θ \theta θ的贝叶斯估计为 δ ( x ) \delta (x) δ(x).
    在经典方法中衡量一个估计量的优劣要看其均方误差,一个估计量均方误差(MSE)越小越好。
    此处对贝叶斯估计 δ ( x ) \delta (x) δ(x),衡量它的优劣用下面的后验均方误差(posterior mean square error,简记为PMSE),即用
    P M S E ( δ ( x ) ) = E θ ∣ x [ ( θ − δ ( x ) ) 2 ] PMSE(\delta(x))=E^{\theta|x}[(\theta-\delta(x))^2] PMSE(δ(x))=Eθx[(θδ(x))2] 来度量估计量 δ ( x ) \delta(x) δ(x)的精度,PMSE越小越好。若记 μ π ( x ) \mu^{\pi}(x) μπ(x) θ \theta θ 的后验均值,特别当 δ ( x ) = E ( θ ∣ x ) = μ π ( x ) \delta(x)=E(\theta|x)=\mu^{\pi}(x) δ(x)=E(θx)=μπ(x)时,则 δ ( x ) \delta(x) δ(x)的PMSE为后验方差,即
    P M S E ( δ ( x ) ) = E θ ∣ x [ ( θ − μ π ( x ) ) 2 ] = V π ( x ) PMSE(\delta(x))=E^{\theta|x}[(\theta-\mu^{\pi}(x))^2]=V^{\pi}(x) PMSE(δ(x))=Eθx[(θμπ(x))2]=Vπ(x)其中 V ( x ) π V(x)^{\pi} V(x)π θ \theta θ的后验方差。对 θ \theta θ的任一估计 δ ( x ) \delta(x) δ(x),其后验均方误差 P M S E ( δ ( x ) ) PMSE(\delta(x)) PMSE(δ(x))与它的后验方差 V π ( x ) V^{\pi}(x) Vπ(x)的关系如下:
    P M S E ( δ ( x ) ) = E θ ∣ x [ ( θ − δ ( x ) ) 2 ] = E θ ∣ x [ ( θ − μ π ( x ) ) + ( μ π ( x ) − δ ( x ) ) ] 2 = V π ( x ) + [ μ π ( x ) − δ ( x ) ] 2 ≥ V π ( x ) \begin{aligned} PMSE(\delta(x))&=E^{\theta|x}[(\theta-\delta(x))^2] \\ &=E^{\theta|x}[(\theta-\mu^{\pi}(x))+(\mu^{\pi}(x)-\delta(x))]^2 \\ &=V^{\pi}(x)+[\mu^{\pi}(x)-\delta(x)]^2 \geq V^{\pi}(x) \end{aligned} PMSE(δ(x))=Eθx[(θδ(x))2]=Eθx[(θμπ(x))+(μπ(x)δ(x))]2=Vπ(x)+[μπ(x)δ(x)]2Vπ(x) 注: 2 E θ ∣ x ( θ − μ π ( x ) ) ( μ π ( x ) − δ ( x ) ) 2E^{\theta|x}(\theta-\mu^{\pi}(x))(\mu^{\pi}(x)-\delta(x)) 2Eθx(θμπ(x))(μπ(x)δ(x)) E θ ∣ x ( θ − μ π ( x ) ) = 0 E^{\theta|x}(\theta-\mu^{\pi}(x))=0 Eθx(θμπ(x))=0\
    等号成立的充要条件是 δ ( x ) = μ π ( x ) \delta(x)=\mu^{\pi}(x) δ(x)=μπ(x),即 θ \theta θ的后验期望估计使PMSE达到最小,故后验期望估计是在PMSE准则下的最优估计。此为经常选取后验期望估计 μ π ( x ) = E ( θ ∣ x ) \mu^{\pi}(x)=E(\theta|x) μπ(x)=E(θx)作为 θ \theta θ的贝叶斯估计的理由。

  4. 多参数情形
    θ = ( θ 1 , … , θ p ) T \boldsymbol{\theta}=(\theta_1,\dots,\theta_p)^T θ=(θ1,,θp)T是向量 θ \boldsymbol{\theta} θ的后验分布为 π ( θ ∣ x ) \pi(\boldsymbol{\theta}|x) π(θx),估计 θ \boldsymbol{\theta} θ的方法如下:
    (1)后验众数估计:从后验分布出发用广义最大似然估计获得使后验密度达到极大时 θ \boldsymbol{\theta} θ的值作为后验众数估计;
    (2)后验期望估计 μ π ( x ) = E θ ∣ x ( θ ) = ( μ 1 π ( x ) , … , μ p π ( x ) ) \boldsymbol{\mu}^{\pi}(x)=E^{\boldsymbol{\theta}|x}(\boldsymbol{\theta)}=(\mu_1^{\pi}(x),\dots,\mu_p^{\pi}(x)) μπ(x)=Eθx(θ)=(μ1π(x),,μpπ(x))。估计量的精度用后验协方差阵(记为 C o v π ( x ) Cov^{\pi}(x) Covπ(x))来衡量:
    C o v π ( x ) = E θ ∣ x [ ( θ − μ π ( x ) ) ( θ − μ π ( x ) ) T ] Cov^{\pi}(x)=E^{\boldsymbol{\theta}|x}[(\boldsymbol{\theta}-\boldsymbol{\mu}^{\pi}(x))(\boldsymbol{\theta}-\boldsymbol{\mu}^{\pi}(x))^T] Covπ(x)=Eθx[(θμπ(x))(θμπ(x))T] θ \theta θ的任一估计 δ ( x ) \boldsymbol{\delta}(x) δ(x),其后验协方差矩阵可分解为
    C o v ( δ ) = E θ ∣ x [ ( θ − δ ( x ) ) ( θ − δ ( x ) ) T ] = C o v π ( x ) + ( μ π ( x ) − δ ( x ) ) ( μ π ( x ) − δ ( x ) ) T ≥ C o v π ( x ) \begin{aligned} Cov(\boldsymbol{\delta})&=E^{\boldsymbol{\theta}|x}[(\boldsymbol{\theta}-\boldsymbol{\delta}(x))(\boldsymbol{\theta}-\boldsymbol{\delta}(x))^T] \\ &=Cov^{\pi}(x)+(\boldsymbol{\mu}^{\pi}(x)-\boldsymbol{\delta}(x))(\boldsymbol{\mu}^{\pi}(x)-\boldsymbol{\delta}(x))^T \geq Cov^{\pi}(x) \end{aligned} Cov(δ)=Eθx[(θδ(x))(θδ(x))T]=Covπ(x)+(μπ(x)δ(x))(μπ(x)δ(x))TCovπ(x)可见后验均值估计仍使后验协方差矩阵达到最小。

二、区间估计

  1. 可信区间定义
    定义2.1(可信区间) 设参数 θ \theta θ的后验分布为 π ( θ ∣ x ) \pi(\theta|x) π(θx) ,对给定的样本 x x x和概率 1 − α 1-\alpha 1α ,若存在两个统计量 θ ^ 1 ( x ) \hat{\theta}_1(x) θ^1(x) θ ^ 2 ( x ) \hat{\theta}_2(x) θ^2(x) ,使得 P ( θ ^ 1 ( x ) ≤ θ ≤ θ ^ 2 ( x ) ∣ x ) ≥ 1 − α P(\hat{\theta}_1(x) \leq \theta \leq \hat{\theta}_2(x)|x) \geq 1-\alpha P(θ^1(x)θθ^2(x)x)1α
    则称 [ θ ^ 1 ( x ) , θ ^ 2 ( x ) ] [\hat{\theta}_1(x),\hat{\theta}_2(x)] [θ^1(x),θ^2(x)] θ \theta θ的可信水平为 1 − α 1-\alpha 1α的贝叶斯可信区间, 常简称为 θ \theta θ 1 − α 1-\alpha 1α的可信区间,而满足 P ( θ ≥ θ ^ L ( x ) ∣ x ) ≥ 1 − α P(\theta \geq \hat{\theta}_L(x) |x) \geq 1-\alpha P(θθ^L(x)x)1α
    θ ^ L ( x ) \hat{\theta}_L(x) θ^L(x) 称为 θ \theta θ的可信水平 1 − α 1-\alpha 1α的贝叶斯可信下限,而满足
    P ( θ ≤ θ ^ U ( x ) ∣ x ) ≥ 1 − α P(\theta \leq \hat{\theta}_U(x) |x) \geq 1-\alpha P(θθ^U(x)x)1α θ ^ U ( x ) \hat{\theta}_U(x) θ^U(x) 称为 θ \theta θ 的可信水平 1 − α 1-\alpha 1α的贝叶斯可信上限.
  2. 最大后验密度可信区间
    定义2.2设参数 θ \theta θ的后验分布为 π ( θ ∣ x ) \pi(\theta|x) π(θx) ,对给定的概率 1 − α 1-\alpha 1α ( 0 < α < 1 ) (0<\alpha<1) (0<α<1),集合 C C C满足如下条件:
    ( 1 ) (1) (1) P ( θ ∈ C ∣ x ) = 1 − α P(\theta \in C |x)=1-\alpha P(θCx)=1α,
    ( 2 ) (2) (2) 对任给的 θ 1 ∈ C \theta_1 \in C θ1C θ 2 ∉ C \theta_2 \notin C θ2/C,总有
    π ( θ 1 ∣ x ) > π ( θ 2 ∣ x ) \pi(\theta_1|x)>\pi(\theta_2|x) π(θ1x)>π(θ2x),则称 C C C θ \theta θ的可信水平 1 − α 1-\alpha 1α最大后验密度可信集 the highest posterior density (HPD) credible set \text{the highest posterior density (HPD) credible set} the highest posterior density (HPD) credible set),简称为 1 − α 1-\alpha 1α HPD可信集(区间)。

三、 假设检验

  1. 一般方法
    贝叶斯假设检验
    后验分布为 π ( θ ∣ x ) \pi(\theta|x) π(θx),计算两个假设 H 0 H_0 H0 H 1 H_1 H1 后验概率 α 0 = P ( Θ 0 ∣ x ) , α 1 = P ( Θ 1 ∣ x ) \alpha_0=P(\Theta_0|\boldsymbol{x}), \quad \alpha_1=P(\Theta_1|\boldsymbol{x}) α0=P(Θ0x),α1=P(Θ1x) α 0 \alpha_0 α0 α 1 \alpha_1 α1是综合抽样信息和先验信息得出的两个假设实际发生的后验概率。在作决定时,通过比较 α 0 \alpha_0 α0 α 1 \alpha_1 α1 的大小,当后验机会比 α 0 / α 1 < 1 \alpha_0 / \alpha_1 <1 α0/α1<1(或称后验概率比) 就拒绝 H 0 H_0 H0 ,否则接受 H 0 H_0 H0 ;当 α 0 / α 1 ≈ 1 \alpha_0 / \alpha_1 \approx 1 α

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值