贝叶斯统计
文章平均质量分 93
「已注销」
这个作者很懒,什么都没留下…
展开
-
RBi Package---技术文档学习
RBi 技术文档1、Getting started2、The bi_model class3、Generating a dataset4、The `libbi` class5、Fitting a model to data using PMCMC6、Analysing an MCMC run7、Predictions8、Sample observations9、Filtering10、Plotting11、Saving and loading libbi objects12、Creating libbi原创 2021-04-26 11:00:03 · 565 阅读 · 0 评论 -
Copula,最小二乘法及lasso回归, 岭回归
Copula,最小二乘法及lasso回归, 岭回归Copula函数Sklar定理(1959)多元正态Copula函数多元t−Copulat-Copulat−Copula函数阿基米德Copula函数收缩方法(shrinkage method)最小二乘法岭回归lasso回归图Lasso方法的罚图模型之前讨论班准备的笔记,截取部分保存起来。Copula函数当边缘分布(marginal probability distribution)不同的随机变量(random variable),互相之间并不独立的时候,原创 2021-03-24 20:24:02 · 851 阅读 · 0 评论 -
Particle Filter 粒子滤波
Particle Filter 粒子滤波贝叶斯滤波重要性采样Sequential Importance Sampling (SIS) Filter重采样Sampling Importance Resampling Filter (SIR)人都喜欢自以为是。心外无事,就没事了。本文抄自:https://blog.csdn.net/heyijia0327/article/details/40899819贝叶斯滤波假设有一个系统,我们知道它的状态方程和测量方程如下状态方程:xk=fk(xk−1,vk−原创 2021-03-24 20:01:22 · 232 阅读 · 0 评论 -
Hamiltonian Monte Carlo抽样算法的初步理解
Hamiltonian Monte Carlo抽样算法的初步理解接受拒绝采样算法MCMC回顾Hamiltonian dynamics拉格朗日方程从牛顿方程出发推导拉格朗日方程哈密顿方程哈密顿函数HMCHamiltonian dynamics的直观认识:哈密顿方程运动方程哈密顿动力学的性质可逆性Hamiltonian不变保持体积Symplecticness(辛)局部和总体误差MCMC from Hamiltonian dynamicsProbability and the Hamiltonian — cano原创 2021-03-07 16:47:25 · 1067 阅读 · 0 评论 -
马尔可夫链蒙特卡洛(Markov Chain Monte Carlo)
MCMC方法的许多应用是关于贝叶斯统计分析问题的,这些贝叶斯统计分析中常常需要计算后验分布的一些数字特征,如后验期望、后验方差、后验众数、后验分位数等。蒙特卡洛抽样方法\textbf{蒙特卡洛抽样方法}蒙特卡洛抽样方法设 p(x∣θ)p(\boldsymbol{x}|\theta)p(x∣θ)表示样本的概率函数(或称为参数θ\thetaθ 的似然函数), π(θ)\pi(\theta)π(θ)...原创 2020-05-01 12:45:42 · 1767 阅读 · 0 评论 -
粒子滤波算法
本文为《蒙特卡罗方法理论和应用》笔记1.动态空间模型\textbf{1.动态空间模型}1.动态空间模型动态空间模型包括过程模型和观测模型,分别由状态方程和观测方程描述,状态方程和观测方程为:x(t)=a(x(t−1),u(t))y(t)=b(x(t),v(t))\begin{aligned} \boldsymbol{x}(t) &=a(\boldsymbol{x}(t-1), \b...原创 2020-05-01 11:47:41 · 502 阅读 · 0 评论 -
贝叶斯滤波(Bayes filters)
细说贝叶斯滤波:Bayes filters(一)概率论公式全概率公式:离散情况下:p(x)=∑yp(x,y)=∑yp(x∣y)p(y)p(x)=\sum_{y}p(x,y)=\sum_{y} p(x|y)p(y)p(x)=y∑p(x,y)=y∑p(x∣y)p(y)连续情况下:p(x)=∫p(x,y)dy=∫p(x∣y)p(y)dyp(x)=\int p(x,y)dy=\int ...转载 2020-05-01 10:59:57 · 858 阅读 · 0 评论 -
贝叶斯统计推断笔记
目录:一、贝叶斯点估计二、区间估计三、 假设检验四、预测推断五、假设检验与模型选择六、贝叶斯模型评价一、贝叶斯点估计条件方法后验分布π(θ∣x)\pi(\theta|x)π(θ∣x)是在样本xxx给定下θ\thetaθ的条件分布,基于后验分布的统计推断就意味着只考虑已出现的数据(样本观测值),而认为未出现的数据与推断无关,这一重要的观点被称为“条件观点”,基于这种观点提出的统计推断方法被...原创 2020-05-01 10:16:57 · 2093 阅读 · 0 评论